
Hadoop HDFS: Distributed File System 
•  Allows storage of petabyte size files as 64 MB blocks across multiple nodes. 
•  Filesystem tree and block locations are maintained by a namenode (master). 
•  Blocks are replicated among several datanodes. Under-replicated blocks are 

asynchronously replicated across the cluster. 
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In 2000 the Human Genome Project released the "rough draft" of the human genome, the 
result of ten years of work by researchers in seven countries at a code of $3 billion. 
Continuing advancements in second-generation sequencing technologies have made it 
possible for a single laboratory sequence a whole human genome in a matter of days or 
weeks at less than one millionth of the cost. In total, current worldwide second-generation 
sequencing capacity exceeds 13 Pbp/year, and continues to increase by 5x each year. 
 
As impressive as this revolution in whole-genome sequence speed and cost may be, 
however, the storage and analysis of such massive volumes of data has become a primary 
challenge, necessitating equally revolutionary advancements in computational genomics. 
 
To help meet this challenge, our lab has been applying recent innovations in high 
performance computing distributed computing – particularly distributed computing – to 
the challenge of large-scale genomic storage and analysis by creating Jnomics, a Java-
based toolkit and API based on Google's MapReduce framework, which allows rapid 
development of parallelized genomic analysis pipelines using components constructed 
from the Jnomics API and/or existing binaries executed in a distributed fashion. 

Abstract Jnomics case study: structural variations in cancer 
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Structural variations 
 

Structural variations (SVs) – balanced or unbalanced chromosomal 
rearrangements such as insertions, deletions, inversions, and large 
tandem duplications – represent a major source of genetic variation 
in humans. SVs can also underlie clinically significant phenotypes 
by creating copy number alterations in dosage-sensitive genes or 
rearrangements introducing gain of function mutations. This is 
particularly evident in carcinogensis: an analysis of available data 
suggests that gene fusions occur in all malignancies, and that they 
account for 20% of human cancer morbidity. 

Hadoop – a distributed computing framework 

Apache Hadoop is an open-source Java 
implementation of the MapReduce framework 
introduced by Google in 2004. Contributors 
include Yahoo, Facebook, Twitter, Amazon.  

Hadoop is enables distributed computation on large data sets across large computing 
clusters, potentially allowing applications to work with petabytes of data spread over 
thousands of nodes. 

Benefits: Linearly scalable, reliable, easy to program, runs on commodity computers 
Challenges: Map-reduce is not suitable for all problems. 

Hydra Discordant Pair Analysis 

(Quinlan, 2010) 

Sample separation:  2000 bp 

Mapped Separation: 1000 bp 

Illumina sequencing generates 
reads in pairs from both ends of a 
fragment with a known separation. 

SVs can be inferred from 
discordant pairs that map to the 
reference with unexpected distance 
or orientation. 
Multiple discordant read pairs are 
clustered to pinpoint breakpoints. 
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BLN Discordant Pairs by Lane 

Jnomics vs. standard SV workflows 

Discordant pairs selection by 
tiered alignments: each tier 
aligns the sample reads to the 
reference; discordant pairs are 
selected, filtered by quality. 
Each tiers realigns discordant 
pairs with progressively 
greater sensitivity. 
Hydra clusters the final 
discordant pairs, from which it 
infers breakpoints that indicate 
structural variations. 
The standard (serial) workflow 
is highly resource intensive, 
requiring several weeks per 
single genome. 

Jnomics  
distributed workflow 

Standard 
workflow 
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Input: Fastq Input: Fastq 

Samples of normal, dysplastic Barrett’s esophagus, and frank carcinoma from the same 
individual were sequenced using Illumina paired-end protocol and evaluated using the 
Hydra structural variation workflow. 
•  BLN (Normal Tissue) – 1.56B reads; discordant pairs: 16% (Tier 1); 10% (final) 
•  BLB (Barrett’s esophagus) –1.84B reads; discordant pairs: 17% (Tier 1); 11% (final) 
•  BLL (Esophageal adenocarcinoma) – 1.77B reads, 50% (Tier 1); 14% (final)  

Jnomics allows us to parallelize most of the pipeline, and removes several file type 
conversion steps between BAM, SAM, fastq, and BED.   

Pair analysis of esophageal cancer 

Circos plot of high-confidence SVs 
specific to pathologic samples. 

•  Red: SV’s present only in cancer 
(BLL) sample. 

•  Green: SV’s in cancer (BLL) and 
pre-cancer (BLB) samples. 

A detailed analysis of disrupted and 
fusion genes in progress.  
Preliminary analysis suggests a 
number of breaks in known 
oncogenes. 

Jnomics structural variations 

(Bayani et al., 2002) 

Distributed genomics analysis with Jnomics  

Jnomics was designed from the ground up to be intuitive enough to let scientists spend time doing 
science, while also providing a powerful open-source Java API that lets developers modify, extend, or 
add functionality: 

• Minimal configuration: Jnomics provides a number of tools out-of-the-box that allow you to distribute 
a variety of common genomic tasks, including sorting, merging, filtering, selection. 

• File-format agnostic: Jnomics allows users to seamlessly read and write many common formats 
(SAM, BED, fastq), largely eliminating time-consuming format conversions that add significant 
overhead to genomics pipelines. 

• Parallelization of existing tools: Although many excellent genomic tools already exist, very few of 
these are designed to operate in a distributed environment. Jnomics allows the user to distribute the 
execution of existing tools, allowing an easy transition from serial to distributed analyses. Jnomics 
currently supports BWA and  Novoalign (with more to come!); the Jnomics API allows components to 
be added easily. 

Command line examples 

Example 1. Using Jnomics to merge files and convert formats 

It is trivial to simultaneously merge multiple files and convert them to another format. Given a pair of fastq files: 

  input_1.fq:                input_2.fq 

 

 
 

  The jnomics processor command: distributed sequencing read processing and transformation 

@READ_NAME/1 
GATTACAGATTACA 
+ 
HHHII9DAAACCEF 

@READ_NAME/2 
ACTGACTGACTG 
+ 
DDDBBACACCCD 

$ jnomics processor –in input_1.fq input_2.fq –out combined –-out-format sam 
READ_NAME  69   *  0  0  0  *  *  0  0  GATTACAGATTACA  HHHII9DAAACCEF 
READ_NAME  133  *  0  0  0  *  *  0  0  ACTGACTGACTG    DDDBBACACCCD       

Example 2. Using Jnomics for distributed read alignment with BWA 

It is just as simple to run a distributed BWA  job. In this example, the output of the previous is being used as the input. The 
default output format is SAM. 

 $ jnomics bwa –in combined –out bwaout –-aln-args “-q 20” -–sampe-args “-a 400” 

API example 

Jnomics provides an open source Java API that makes it simple to create distributed genomic analysis tools.  

•  JnomicsTool: Provides flexible and versatile command line parameter handling. 
•  JnomicsMapper and JnomicsReducer: Used to implement map and reduce functions. 
•  QueryTemplate and SequencingRead: Reads are provided to the mapper and reducer as one or more SequencingRead objects 

contained within a QueryTemplate instance. Jnomics automatically combines reads from the same template. 

Below is an example of a complete Jnomics tool that inputs sequencing reads from an input file and keeps only paired reads. 

public class FilterUnpaired extends JnomicsTool {  
    /** 
     * A mapper that writes paired reads, and ignores all others. 
     */ 
    public static class FilterUnpairedMapper 
            extends JnomicsMapper<Writable, QueryTemplate, Writable, QueryTemplate> { 
  
        protected void map(Writable key, QueryTemplate value, Context context) 
                throws IOException, InterruptedException { 
  
            if (value.size() == 2) 
                context.write(key, value); } 
    } 
 
    /** The entry point of the tool, replacing main(String[]).  
     *  Standard commands and input files are handled automatically. 
     */ 
    public int run(String[] args) throws Exception { 
        getJob().setReducerClass(FilterUnpairedReducer.class); 
        return getJob().waitForCompletion(true) ? 0 : 1; 
    } 
} 

Hadoop MapReduce: distributed computation 
Distributed computation in three phases, running in parallel. 

•  Map: Worker nodes process sub-problem, report results as key:value pairs. 

•  Shuffle: Values from all nodes are grouped by key. 

•  Reduce: Worker nodes process grouped values to produce final output. 
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Modified from Hadoop, The Definitive Guide by Tom White, O’Reilly Media, Inc., 2011 

Hadoop for next-generation sequencing analysis 

CloudBurst 
Highly-sensitive short read 
mapping with MapReduce 

100x speedup mapping on 96 
cores @ Amazon 

http://cloudburst-bio.sf.net 

Myrna 
Cloud-scale differential gene 
expression for RNA-seq 

Expression of 1.1 billion RNA-
Seq reads in ~2 hours for ~$66 

http://bowtie-bio.sf.net/myrna/ (Schatz, 2009) (Langmead, Hansen, Leek, 2010) 

Genome Indexing 
Rapid parallel construction of 
genome index 

Construct the BWT of the human 
genome in 9 minutes 

http://code.google.com/p/ 
genome-indexing/ (Menon, Bhat, Schatz, 2011*) 

Quake 
Quality‐aware error 
correction of short read 

Correct 97.9% of errors with 
99.9% accuracy 
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http://www.cbcb.umd.edu/software/quake/ 
(Kelley, Schatz, 
Salzberg, 2010) 


