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— Assembly by analogy

2. Practical Issues

— Coverage, read length, errors, and repeats
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— Long read sequencing of breast cancer




Shredded Book Reconstruction

* Dickens accidentally shreds the first printing of A Tale of Two Cities

— Text printed on 5 long spools

It wag thevhesthefb

=

stinfeiriesyas whae wlorstop of times, it was the pggebivwsddomititveashg dge agfooflifdnlicdmess, |..

It waq thevhesthe of times, it was the n¢ worst of times, it was thE thge agendfsiiad ommwis [thevagethé fagdi o fieskishnes

It wag thevisbidst besiroésjritevait ‘“vahcthmomef tifntaselt, it was the age of wisdom, 1‘

it was the age of [liftonleslsness,|...

It was |t thesbes¢ bﬁﬁhnésiﬁte#,wawahe:hmmhef tifrtemey it was the age of yiwdsdonit tasash thegagef #oﬁsﬁmiiﬁsness,

It

wak thesbdst bEsimédjnjelt, wawdhdworsiref df times, it was the age ¢f ofimdedomt iwasaththeg¢ agfoofifdulesdsness, |...

* How can he reconstruct the text!
— 5 copies x 138,656 words / 5 words per fragment = |38k fragments
— The short fragments from every copy are mixed together

— Some fragments are identical




It was the best of

age of wisdom, it was

best of times, it was

it was the age of

it was the age of

it was the worst of

of times, it was the

of times, it was the

of wisdom, it was the

the age of wisdom, it

the best of times, it

the worst of times, it

times, it was the age

times, it was the worst

was the age of wisdom,

was the age of foolishness,

was the best of times,

was the worst of times,

wisdom, it was the age

worst of times, it was

Greedy Reconstruction

It was the best of

was the best of times,

the best of times, it

best of times, it was

of times, it was the

of times, it was the

The repeated sequence make the correct
reconstruction ambiguous

* It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem



de Bruijn Graph Construction

* G = (VE)

* V = Length-k sub-fragments
* E = Directed edges between consecutive sub-fragments
* Sub-fragments overlap by k-1 words

Fragments |f|=5

It was the best of

Sub-fragment k=4

It was the best

was the best of

was the best of times

was the best of

the best of times

Directed edges (overlap by k-1)

It was the best

—>» was the best of

—_—

the best of times

— Overlaps between fragments are implicitly computed

de Bruijn, 1946
Idury et al., 1995
Pevzner et al., 2001



It was the best

N

was the best of

~

de Bruijn Graph Assembly

the best of times,

™SS

best of times, it

N,

of times, it was

T

it was the worst

times, it was the

After graph construction,
try to simplify the graph as
much as possible
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it was the age
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wisdom, it was the




Compacted de Bruijn Graph

It was the best of times, it

v

it was the worst of times, it

of times, it was the

After graph construction,
try to simplify the graph as
much as possible

the age of foolishness

it was the age of

the age of wisdom, it was the




The full tale

... it was the best of times it was the worst of times ...
... it was the age of wisdom it was the age of foolishness ...
... it was the epoch of belief it was the epoch of incredulity ...
... it was the season of light it was the season of darkness ...

... it was the spring of hope it was the winder of despair ...

wisdom .
I_) foolishness worst

it was the winter of despair

I—> spring of hope

peliet
epoch of K

incredulity

L light
season of <
darkness




Assembly Complexity

Finding possible assembly paths is easy!

e Eulerian tour in linear time © @—@® — O
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Assembly Complexity

Finding possible assembly paths is easy! C
 Eulerian tour in linear time © @—e—

However, there is a astrenomical genomical number of possible paths!
* Proportional to the product of the factorial of the degree of the nodes
Kingsford, Schatz, Pop (2010) BMC Bioinformatics | 1:21

* Alternative formulations related to the shortest-common-superstring
problem are NP-hard

Computability of Models for Sequence Assembly
Medvedev et al (2007) Algorithms in Bioinformatics. 978-3-540-74126-8

Hopeless to figure out the whole genomel/chromosome (with short reads):
figure out the parts that you can



Contig N50

Def: 50% of the genome 1s 1n contigs as large as the N50 value

50%

v
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N50 size = 30 kbp

Example: | Mbp genome

v

= JSRRR RS RANRARI

N50 size = 3 kbp
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Contig N50

Def: 50% of the genome is 1n contigs as large as the N50 value

~nNnn/

Better N50s improves the analysis in every dimension

Better resolution of genes and flanking regulatory regions
Better resolution of transposons and other complex sequences
Better resolution of chromosome organization

Better sequence for all downstream analysis

Just be careful of N50 inflation!
* A very very very bad assembler in | line of bash:

* cat *.reads.fa > genome.fa

N50 size = 3 kbp
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Assembly Applications
* Novel genomes i\-p‘ v(ﬁ‘,g e %
GENOME 10K. §5

* Metagenomes

* Sequencing assays
— Structural variations

— Transcript assembly




Assembling a Genome

|. Shear & Sequence DNA - = —
- T =

2. Construct assembly graph from reads (de Bruijn / overlap graph)

.AGCCTAGGGATGCGCGACACGT

GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC
CAACCTCGGACGGACCTCAGCGAA...

3. Simplify assembly graph

E—> 00— 0 —>0—>0—>0—>0 — 0 5 0 —» == = "—> 0o

el N el N

o @] (@] (&)

4. Detangle graph with long reads, mates, and other links

G



Ingredients for a good assembly

Coverage

dog N50 /

dog me:

M
1

100k

panda N50 +

panda mean +

10k
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1k

= 1000 bp
=@ 710bp
@ 250 bp
= 100 bp
W 52bp
B 30 bp

Expected Contig Length

100
|

Read Coverage

High coverage is required

—  Oversample the genome to ensure
every base is sequenced with long
overlaps between reads

—  Biased coverage will also fragment
assembly

Read Length

\v

O\O\ ot
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o //’%ﬂf@\
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Reads & mates must be longer
than the repeats

—  Short reads will have false overlaps
forming hairball assembly graphs

—  With long enough reads, assemble
entire chromosomes into contigs

Quality

lg" "gl
H—
N

Errors obscure overlaps

—  Reads are assembled by finding
kmers shared in pair of reads

—  High error rate requires very short
seeds, increasing complexity and
forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly
Schatz MC,Witkowski, McCombie,WR (2012) Genome Biology. 12:243




Typical sequencing coverage

>

Coverage

Contig

Reads

Imagine raindrops on a sidewalk
We want to cover the entire sidewalk but each drop costs $1

If the genome is 100 Mbp, should we sequence IM 100bp reads!?
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2Xx sequencing

Balls in Bins
Total balks: 2000

Frequency

Histogram of balls in each bin
Total balls: 2000 Empty bins: 142

balls in bin
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4x sequencing

Balls in Bins
Total balks: 4000

Frequency
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Histogram of balls in each bin
Total balls: 4000 Empty bins: 17

balls in bin
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8X sequencing

Balls in Bins
Total balks: 8000

400

Histogram of balls in each bin
Total balls: 8000 Empty bins: 1
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Poisson Distribution

The probability of a given number of )\k
events occurring in a fixed interval of P(k) —r— 6_ A
time and/or space if these events occur

with a known average rate and
independently of the time since the last

event. 0.40 - -
0.35} ° 1 ° A=l
Formulation comes from the limit of the | e \—14
binomial equation 0.30F | o X=10 '
= 0.25¢} :
Resembles a normal distribution, but to2ol |ee
over the positive values, and withonly & ? >
a single parameter. fe A 00
o10f /| e g
Key properties: oosl / @ S o _
» The standard deviation is the Conl € o %o “og |
. IS:Z If | have an average of 100x coverage, what is the expected range in 20

coverage to 2 standard deviations?

by oA 1IvVITIIdl uiouiIvuuivili



Kmer-based Coverage Analysis
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Coverage

[Te}
—
(=2
o

Error k- &, Y
5+ || mers  H '\i
_ '!\ True k-

t  mers

n ]
T

)1 ]
T
> s

61
5.

34

E

;
I
Density

]

\_‘j::

11

Contig

Reads

0] 20 40 60 80 100

Coverage

Even though the reads are not assembled or aligned (or reference available),
Kmer counting is an effective technique to estimate coverage & errors

Quake: quality-aware detection and correction of sequencing reads.
Kelley, DR, Schatz, MC, Salzberg SL (2010) Genome Biology. | |:R116



GenomeScope: Fast reference-free genome profiling from short reads
http://gb.cshl.edu/genomescope/

GenomeScope Profile GenomeScope Profile
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Automatically estimate several genome properties from unassembled reads

 (Genome size - Effective Coverage
* Repetitiveness « Sequencing Error Rate
» Rate of heterozygosity » Rate of PCR Duplicates

Vurture et al. (2017) Bioinformatics. doi: https://doi.org/10.1093/bioinformatics/btx153



Unitigging / Unipathing

* After simplification and correction, compress graph
down to its non-branching initial contigs

M ¢

— Aka “unitigs”, “unipaths”
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Why do unitigs / unipaths end?

(1) lack of coverage, (2) errors, (3) heterozygosity and (4) repeats



Repetitive regions

Repeat Type Definition / Example

Low-complexity DNA / Microsatellites (b,b,...b )N where | <k <6 2%
CACACACACACACACACACA

SINEs (Short Interspersed Nuclear Alu sequence (~280 bp) 13%

Elements) Mariner elements (~80 bp)

LINEs (Long Interspersed Nuclear ~500 — 5,000 bp 21%

Elements)

LTR (long terminal repeat) Ty | -copia, Ty3-gypsy, Pao-BEL 8%

retrotransposons (~100 — 5,000 bp)

Other DNA transposons 3%

Gene families & segmental duplications 4%

* Over 50% of mammalian genomes are repetitive

— Large plant genomes tend to be even worse
— Wheat: 16 Gbp; Pine: 24 Gbp



Repeats and Coverage Statistics

A R, B R, Ri+ R,

* If n reads are a uniform random sample of the genome of length G,
we expect k=n A /G reads to start in a region of length A.

— |If we see many more reads than k (if the arrival rate is > A) , it is likely to be
a collapsed repeat

) y (An/G)" =5
Pr(X - copy) = " (XA) (G_XA) A(Ak)=In Pr(l - copy) =In k! 5 | = nA —kln2
kN G G Pr(2 - copy) (2An/G) .G G
k!

The fragment assembly string graph
Myers, EW (2005) Bioinformatics. 2| (suppl 2):ii79-85.



Scaffolding

* Initial contigs (aka unipaths, unitigs)
terminate at
— Coverage gaps: especially extreme GC
— Conflicts: errors, repeat boundaries

* Use mate-pairs/linked-reads/HiC/ optical
maps to resolve correct order through
assembly graph

— Place sequence to satisfy the mate constraints
— Mates through repeat nodes are tangled

* Final scaffold may have internal gaps called
sequencing gaps
— We know the order, orientation, and spacing,
but just not the bases. Fill with Ns instead

*
*
*
*
*
*
*
“
*

‘Q
*
’Q
*



£ M
Assembly Summary £7550)
f%f @mw‘gé\\\‘yf»«

Assembly quality depends on

I. Coverage:low coverage is mathematically hopeless

2. Repeat composition: high repeat content is challenging
3. Read length: longer reads help resolve repeats

4. Error rate: errors reduce coverage, obscure true overlaps

* Assembly is a hierarchical, starting from individual reads, build high
confidence contigs/unitigs, incorporate the mates to build scaffolds

— Extensive error correction is the key to getting the best assembly possible
from a given data set

* Watch out for collapsed repeats & other misassemblies

— Globally/Locally reassemble data from scratch with better parameters &
stitch the 2 assemblies together
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Single Molecule Sequencing

. TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG
PacBio RS |l

TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG

ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG

A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG

CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG

C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG

TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA

T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA

-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA

GAGGAGG---AA————— GAATATCTGAT-AAAGATTACAAATT-GAGTGA

ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT

ACTAAATTCACAA-ATAATAACACTTTTAGACAAAATTGATGGGAAGGTT

T

0 10k 20k 30k 40k TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA

CSHL/PacBio L EEEEEEr e P e e P P TR

TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA

Sample of 100k reads aligned with BLASR requiring >100bp alignment
Average overall accuracy 83.7%: | 1.5% insertions, 3.4% deletions, |.4% mismatch



Single Molecule Sequences
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cns error rate

Consensus Accuracy and Coverage

<
o
\ B observed consensus error rate
/A
- ;A B expected consensus error rate (e=.20)
o ¥\ OB expected consensus error rate (e=.16)
1\ B expected consensus error rate (e=.10)
N
o
g
(@)
o o= & @= @ & @
[ [ [ [ [ [
0 5 10 15 20 25
coverage

Coverage can overcome random errors

* Dashed: error model from binomial sampling CNSError = S ( ¢ )(e)i(l_e)ni

* Solid: observed accuracy ifer2]

Hybrid error correction and de novo assembly of single-molecule sequencing reads.
Koren et al (2012) Nature Biotechnology. doi:10.1038/nbt.2280



FALCON-unzip Accuracy

"The overall base-to-base concordance rate is
about 99.99% (QV40 in Phred scale) in the Fl
: 1 ..... AR @1 ........ FALCON-Unzip assembly.The insertion and

& . : deletion (indel) concordances to the parental
lines were lower (about QV40) than the SNP

] Corrected Phased .
Reads PacBio Reads concordance rate (about QV50), with most
®‘ @; residual errors concentrated in long
homopolymer sequences”
Read Phase Annotated
Overtaps Strging Graph

(b)

Draf

b

Sting Primary Contigs + [/
Graph Haplotigs |
v i A
o AR o |
' Draht Primnary Conligs + .
. Dip-contigs Haplobgs
a-contigs Consensus

FALCON ° ‘FALCON-Unzip °

Phased Diploid Genome Assembly with Single Molecule Real-Time Sequencing
Chin et al (2016) Nature Methods. doi:10.1038/nmeth.4035.



“Corrective Lens” for Sequencing
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(A few) Recent Long Read Assemblies

“.‘w '
l

7.0 Mbp

#1mbctgclub



Long-read sequencing
of breast cancer




SK-BR-3

Most commonly used Her2-amplified breast cancer

’ ) 7’ (AR . Rl Maria Nattestad

%
.

|
' .

(080 e3tof )N

_. i}og‘.a

*h
(Davidson et al, 2000)
Can we resolve the complex structural variations, especially around Her2?

Recent collaboration between JHU, CSHL and OICR to de novo assemble
and analyze the complete cell line genome with PacBio long reads



Structural Variation Analysis

Assembly-based

Assembly with
Falcon on
DNAnexus

Alignment with
MUMmer

| 1
é ) 4 ™
Call variants

between
consecutive
alignments with

Call variants
within
alignments with

Split-Read based

Alignment with

Assemblytics
G J \ )

~ 11,000 structural variants
50 bp to 10 kbp

Copy number SV-calling from
analysis with split reads with
[ ]
Validations

~ 20,000 structural variants

Including many inter-chromosomal

rearrangements



NGMLR + Sniffles

BWA-MEM: NGMLR:

Accurate detection of complex structural variations using single molecule sequencing
Sedlazeck, Rescheneder et al (2018) Nature Methods. doi:10.1038/s41592-018-0001-7



Highlights

* Finding 10s of thousands of additional variants
« PCR validation confirms high accuracy of long reads

« Detect many novel gene fusions

 l|dentify early vs late mutations in the cancer

. " }
g .“ ,/. -
" .
'

Fgure 1. Vanants found in SK-BR-3 wath PacBio longread seguencing, (A) Crcos (Krzywinsks et al, 2009) plot showsng long-fange (larger than 10 kbp o
inter-chromaosomal) varnants found by Seeffies Irom split-tead algrments, with read coverage shown in the ouler track. (7)) Vanant wre hstogram ol dele-
tons and insertions from sze 50 bp up to | kbp found by long-read (Sndties) and shortsead (SURVIVOR 2.caller consensus) vanant caling, showing similar
sze dstrutions for insertions and deletsans from Kng reads DUt not for thor reads, wisere mertions ace greatly underrepresented. (C) Sralfles varant
counts by type for vanants above | kbp in sie, including translocations and inverted duphcations

Complex rearrangements and oncogene amplifications revealed by long-read DNA

and RNA sequencing of a breast cancer cell line
Nattestad et al. (2018) Genome Research. doi: 10.1101/gr.231100.117



Oxford Nanopore Sequencing @’

« Thumb drive sized sequencer

powered over USB

« Capacity for 512 reads at once

« Senses DNA by measuring

changes to ion flow

Current

Time

e . e
R A \ﬁ_/




Nanopore Sequencing

G-tube sense/antisense

high molecular

\
\
|




Nanopore Basecalling

* Hidden Markov model
*  Only four options per transition
« Pore type = distinct kmer length

* Form probabilistic path through
ONTI COGACTCCGGTTACCCLUCTTGATTTROTCOGGOALGGOOG

T N N N T N RN RN NI I I T Y measured states currents and
REF CCGACTCCOGTTACCASCOTTGATTTOCTOGOGCAS0000G transitions

/ «  e.g. Viterbi algorithm J

Originally HMM based base calling, quickly shifting to RNN approaches




Oxford Nanopore Sequencing

MinlION

$ 1k / instrument
~$ 15k / human @ 50x
Long reads, Low throughput

PromethION

$75k / instrument
~$4k / human @ 50x
Long reads, High throughput



Taking Nanopore Sequencing into the Clinic

Resected primary Mechanical/ (. Purification , »
tumor y enzyma’[iC p @ !, — ’
— i —_— ! ! ’. L) " "
s/ L~
v Stable Growth in 3D Tumor organoids in culture <«—
v Recapitulate tumor pathology Bt &
& treatment response ol st A Plating on Matrigel

v Maintenance of tissue/tumor

_ Add growth factors
heterogeneity

v “2017 Method of the Year” - 3;‘ N orthwell
Nature Methods Health

David Spector Karen Kostroff



Oxford Nanopore Sequencing Results

Tissue source impacts Tissue source impacts
read length yield per flow cell

40000-

12

30000-

gth

20000~

read len

10000-

‘\éi\sc,.oe ‘\6\-39%00 a«\g\\o equencing y. . . SHL
¥ * Winston Timp @ JHU




Preliminary Structural Variations Analysis

All SVs in normal 9816 5225 3727
All SVs in tumor 13737 7020 988 5292 202 235
SVs only in tumor
(Also exclude 3662 1805 420 1250 98 89

NA12878)



Preliminary Structural Variations Analysis

All SVs in normal 9816 5225 3727
All SVs in tumor 13737 7020 988 5292 202 235
SVs only in tumor
(Also exclude 3662 1805 420 1250 98 89
NA12878)
- . @ecOBev it
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—:’:“*‘:'._'.* —— ——— ‘..-:‘. . ,“ = 62bp repeat expansion in
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XN BRCA1 detected in normal
/' = | tissue that is undetectable
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In pursuit of perfect genome sequencing

New sequencing technologies combined with new algorithms are
revealing a universe of new genomic variants to study

Tens of thousands of SVs per person, many megabases of variation

|dentification of novel cancer drivers

|dentification of novel genetic risk factors

|[dentification of novel isoforms and fusion genes

|dentification of novel tumor virus and transposable element insertions
|[dentification of novel genomic and transcriptomic epigenetic modifications
Enhanced study of tumor progression, allele-specific factors

-

FALCON

Y

SURVIVOR

NGM+Sniffle

A VA A JAX A\

http://schatz-lab.org



Computational Research Landscape

* Avoid
* New lllumina/PacBio base callers
* Entirely new genome assembler from scratch

* Good
* Alignment/Assembly/Analysis methods robust to errors, polyploidy, aneuploidy
* Use insights from long-reads to improve analysis of short-reads

* Best
* Synthesis of large numbers of samples (“pan-genome assembly”)
and/or multiple data types (“multi-omics”)
* Prioritization and interpretation of variations

4 Y

FALCON SURVIVOR NGM+Sniffle

N\
http://schatz-lab.org

S Assemblytics
\_ ./ \
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REVIEWS

{5 COMPUTATIONAL TOOLS

Piercing the dark matter:
bioinformatics of long-range
sequencing and mapping

Fritz J. Sedlazeck®’', Hayan Lee®’, Charlotte A Darby®* and Michael C. Schatz***

Abstract | Several new genomics technologies have become available that offer long-read
sequencing or long-range mapping with higher throughput and higher resolution analysis
than ever before. These long-range technologies are rapidly advancing the field with improved
reference genomes, more comprehensive variant identification and more complete views of
transcriptomes and epigenomes. However, they also require new bioinformatics approaches
to take full advantage of their unique characteristics while overcoming their complex errors
and modalities. Here, we discuss several of the most important applications of the new
technologies, focusing on both the currently available bioinformatics tools and opportunities
for future research.

Piercing the dark matter: bioinformatics of long- range sequencing and mapping
Sedlazeck et al (2018) Nature Reviews Genetics. doi:10.1038/s41576-018-0003-4
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