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Shredded Book Reconstruction

• Dickens accidentally shreds the first printing of A Tale of Two Cities
– Text printed on 5 long spools

• How can he reconstruct the text?
– 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
– The short fragments from every copy are mixed together
– Some fragments are identical

It was the best of of times, it was thetimes, it was the worst age of wisdom, it was the age of foolishness, …

It was the best worst of times, it wasof times, it was the the age of wisdom, it was the age of foolishness,

It was the the worst of times, it best of times, it was was the age of wisdom, it was the age of foolishness, …

It was was the worst of times,the best of times, it it was the age of wisdom, it was the age of foolishness, …

It it was the worst ofwas the best of times, times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, …

It was the best of of times, it was thetimes, it was the worst age of wisdom, it was the age of foolishness, …

It was the best worst of times, it wasof times, it was the the age of wisdom, it was the age of foolishness,

It was the the worst of times, it best of times, it was was the age of wisdom, it was the age of foolishness, …

It was was the worst of times,the best of times, it it was the age of wisdom, it was the age of foolishness, …

It it was the worst ofwas the best of times, times, it was the age of wisdom, it was the age of foolishness, …



Greedy Reconstruction
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The repeated sequence make the correct 
reconstruction ambiguous
• It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem



de Bruijn Graph Construction

• Gk = (V,E)
• V = Length-k sub-fragments
• E = Directed edges between consecutive sub-fragments

• Sub-fragments overlap by k-1 words

– Overlaps between fragments are implicitly computed

It was the best 

was the best of
It was the best 

Sub-fragment k=4 Directed edges (overlap by k-1)

de Bruijn, 1946
Idury et al., 1995

Pevzner et al., 2001

It was the best of

was the best of times

Fragments |f|=5

was the best of

was the best of the best of times
the best of times



de Bruijn Graph Assembly

the age of foolishness
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After graph construction, 
try to simplify the graph as 

much as possible



Compacted de Bruijn Graph

the age of foolishness

It was the best of times, it

of times, it was the

it was the worst of times, it

it was the age of
the age of wisdom, it was theAfter graph construction, 

try to simplify the graph as 
much as possible



The full tale
… it was the best of times it was the worst of times …

… it was the age of wisdom it was the age of foolishness …
… it was the epoch of belief it was the epoch of incredulity …
… it was the season of light it was the season of darkness …
… it was the spring of hope it was the winder of despair …

it was the winter of despair

worst

best
of times

epoch of
belief

incredulity

spring of hope

foolishness

wisdom

light

darkness

age of

season of



Assembly Complexity

Finding possible assembly paths is easy!
• Eulerian tour in linear time J



Assembly Complexity

Finding possible assembly paths is easy!
• Eulerian tour in linear time J

However, there is a astronomical genomical number of possible paths!
• Proportional to the product of the factorial of the degree of the nodes 

Kingsford, Schatz, Pop (2010) BMC Bioinformatics 11:21

• Alternative formulations related to the shortest-common-superstring 
problem are NP-hard

Computability of Models for Sequence Assembly
Medvedev et al (2007) Algorithms in Bioinformatics. 978-3-540-74126-8

Hopeless to figure out the whole genome/chromosome (with short reads): 
figure out the parts that you can



Contig N50
Def: 50% of the genome is in contigs as large as the N50 value

Example: 1 Mbp genome

N50 size = 3 kbp
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Contig N50
Def: 50% of the genome is in contigs as large as the N50 value

Example: 1 Mbp genome

N50 size = 3 kbp

45 30 20 15 15 10 . . . . .45 3

50%

1000

300 45 30100 20 15 15 10 . . . . .45

N50 size = 30 kbp
A

B

Better N50s improves the analysis in every dimension
• Better resolution of genes and flanking regulatory regions
• Better resolution of transposons and other complex sequences
• Better resolution of chromosome organization
• Better sequence for all downstream analysis

Just be careful of N50 inflation!
• A very very very bad assembler in 1 line of bash:
• cat *.reads.fa > genome.fa
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Assembly Applications
• Novel genomes

• Metagenomes

• Sequencing assays
– Structural variations
– Transcript assembly
–…



Assembling a Genome

3. Simplify assembly graph

 1. Shear & Sequence DNA

4. Detangle graph with long reads, mates, and other links

2. Construct assembly graph from reads (de Bruijn / overlap graph)
…AGCCTAGGGATGCGCGACACGT

GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC
CAACCTCGGACGGACCTCAGCGAA…



Ingredients for a good assembly

Current challenges in de novo plant genome sequencing and assembly
Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology. 12:243

Coverage

High coverage is required
– Oversample the genome to ensure 

every base is sequenced with long 
overlaps between reads

– Biased coverage will also fragment 
assembly

Lander Waterman Expected Contig Length vs Coverage
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Read Length

Reads & mates must be longer 
than the repeats
– Short reads will have false overlaps

forming hairball assembly graphs
– With long enough reads, assemble 

entire chromosomes into contigs

Quality

Errors obscure overlaps
– Reads are assembled by finding 

kmers shared in pair of reads
– High error rate requires very short 

seeds, increasing complexity and 
forming assembly hairballs



Typical sequencing coverage
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Imagine raindrops on a sidewalk
We want to cover the entire sidewalk but each drop costs $1

If the genome is 100 Mbp, should we sequence 1M 100bp reads?



1x sequencing



2x sequencing



4x sequencing



8x sequencing



Poisson Distribution

The probability of a given number of 
events occurring in a fixed interval of 
time and/or space if these events occur 
with a known average rate and 
independently of the time since the last 
event.

Formulation comes from the limit of the 
binomial equation

Resembles a normal distribution, but 
over the positive values, and with only 
a single parameter. 

Key properties: 
• The standard deviation is the 

square root of the mean.
• For mean > 10, well approximated 

by a normal distribution

If I have an average of 100x coverage, what is the expected range in 
coverage to 2 standard deviations?



Histogram of cov
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Quake: quality-aware detection and correction of sequencing reads.
Kelley, DR, Schatz, MC, Salzberg SL (2010) Genome Biology. 11:R116 

Even though the reads are not assembled or aligned (or reference available),
Kmer counting is an effective technique to estimate coverage & errors



GenomeScope: Fast reference-free genome profiling from short reads
http://qb.cshl.edu/genomescope/

Automatically estimate several genome properties from unassembled reads
• Genome size • Effective Coverage
• Repetitiveness • Sequencing Error Rate
• Rate of heterozygosity • Rate of PCR Duplicates

Vurture et al. (2017) Bioinformatics. doi: https://doi.org/10.1093/bioinformatics/btx153 



Unitigging / Unipathing

• After simplification and correction, compress graph 
down to its non-branching initial contigs
– Aka “unitigs”, “unipaths”

Why do unitigs / unipaths end?

(1) lack of coverage, (2) errors, (3) heterozygosity and (4) repeats



Repetitive regions

• Over 50% of mammalian genomes are repetitive
– Large plant genomes tend to be even worse
– Wheat: 16 Gbp; Pine: 24 Gbp

Repeat Type Definition / Example Prevalence

Low-complexity DNA / Microsatellites (b1b2…bk)N where 1 < k < 6
CACACACACACACACACACA

2%

SINEs (Short Interspersed Nuclear 
Elements)

Alu sequence (~280 bp)
Mariner elements (~80 bp)

13%

LINEs (Long Interspersed Nuclear 
Elements)

~500 – 5,000 bp 21%

LTR (long terminal repeat) 
retrotransposons

Ty1-copia, Ty3-gypsy, Pao-BEL
(~100 – 5,000 bp)

8%

Other DNA transposons 3%

Gene families & segmental duplications 4%



Repeats and Coverage StatisticsA-stat 

•! If n reads are a uniform random sample of the genome of length G, 
we expect k=n!/G reads to start in a region of length!. 

–! If we see many more reads than k (if the arrival rate is > A) , it is likely to be 
a collapsed repeat   

–! Requires an accurate genome size estimate 
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•! If n reads are a uniform random sample of the genome of length G, 
we expect k=n!/G reads to start in a region of length!. 

–! If we see many more reads than k (if the arrival rate is > A) , it is likely to be 
a collapsed repeat   

–! Requires an accurate genome size estimate 
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The fragment assembly string graph
Myers, EW (2005) Bioinformatics. 21(suppl 2): ii79-85.



Scaffolding
• Initial contigs (aka unipaths, unitigs) 

terminate at
– Coverage gaps: especially extreme GC
– Conflicts: errors, repeat boundaries

• Use mate-pairs/linked-reads/HiC/ optical 
maps to resolve correct order through 
assembly graph
– Place sequence to satisfy the mate constraints
– Mates through repeat nodes are tangled

• Final scaffold may have internal gaps called  
sequencing gaps
– We know the order, orientation, and spacing, 

but just not the bases. Fill with Ns instead

A

C

D

R

B

A C DR B R R



Assembly Summary

Assembly quality depends on 
1. Coverage: low coverage is mathematically hopeless
2. Repeat composition: high repeat content is challenging
3. Read length: longer reads help resolve repeats
4. Error rate: errors reduce coverage, obscure true overlaps

• Assembly is a hierarchical, starting from individual reads, build high 
confidence contigs/unitigs, incorporate the mates to build scaffolds 
– Extensive error correction is the key to getting the best assembly possible 

from a given data set

• Watch out for collapsed repeats & other misassemblies
– Globally/Locally reassemble data from scratch with better parameters & 

stitch the 2 assemblies together
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TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG
||||||||||||||||||||||||| ||||||| |||||||||||| |||
TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG

ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG
| |||||| ||||||||||||| |||| | |||||| |||||| ||||||
A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG

CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG
| |||||| |||| ||  ||||||||||||||||||||||||||||||||
C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG

TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA
| ||||||| |||||||||||||| || ||    |||||||||| |||||
T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA

-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA
||||||   ||     |||||||| || |||||||||||||| || |||

GAGGAGG---AA-----GAATATCTGAT-AAAGATTACAAATT-GAGTGA

ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT
||| ||||||||| | ||||||||||||| ||| ||||||| |||| |||
ACTAAATTCACAA-ATAATAACACTTTTAGACAAAATTGATGGGAAGGTT

TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA
|| ||||||||| ||||||| ||| |||| |||||| ||||| |||||||
TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA

Sample of 100k reads aligned with BLASR requiring >100bp alignment
Average overall accuracy 83.7%: 11.5% insertions, 3.4% deletions, 1.4% mismatch

PacBio RS II

CSHL/PacBio

0 10k 20k 30k 40k

Single Molecule Sequencing



Single Molecule Sequences



Consensus Accuracy and Coverage

Coverage can overcome random errors
• Dashed: error model from binomial sampling
• Solid: observed accuracy 
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Hybrid error correction and de novo assembly of single-molecule sequencing reads.
Koren et al (2012) Nature Biotechnology. doi:10.1038/nbt.2280



FALCON-unzip Accuracy

Phased Diploid Genome Assembly with Single Molecule Real-Time Sequencing 
Chin et al (2016) Nature Methods. doi:10.1038/nmeth.4035.

"The overall base-to-base concordance rate is 
about 99.99% (QV40 in Phred scale) in the F1 
FALCON-Unzip assembly. The insertion and 
deletion (indel) concordances to the parental 
lines were lower (about QV40) than the SNP 
concordance rate (about QV50), with most 
residual errors concentrated in long 
homopolymer sequences”



“Corrective Lens” for Sequencing



(A few) Recent Long Read Assemblies

7.0 Mbp

4.0 Mbp

4.6 Mbp

1.4 Mbp

4.5 Mbp
#1mbctgclub



Long-read sequencing 
of breast cancer



SK-BR-3

(Davidson et al, 2000)

Most commonly used Her2-amplified breast cancer cell line

Can we resolve the complex structural variations, especially around Her2?

Recent collaboration between JHU, CSHL and OICR to de novo assemble 
and analyze the complete cell line genome with PacBio long reads

Maria Nattestad



Split-Read basedAssembly-based

Alignment with 
NGMLR

Copy number 
analysis with 

Ginkgo

SV-calling from 
split reads with 

Sniffles

Validations SplitThreader

Assembly with 
Falcon on 
DNAnexus

Alignment with 
MUMmer

Call variants 
between 

consecutive 
alignments with 
Assemblytics

Call variants 
within 

alignments with 
Assemblytics

~ 20,000 structural variants
Including many inter-chromosomal 

rearrangements 
~ 11,000 structural variants

50 bp to 10 kbp

Structural Variation Analysis



NGMLR + Sniffles
BWA-MEM: NGMLR:

Accurate detection of complex structural variations using single molecule sequencing 
Sedlazeck, Rescheneder et al (2018) Nature Methods. doi:10.1038/s41592-018-0001-7

NGMLR: Convex scoring model to accommodate many small gaps 
from sequencing errors along with less frequent but larger SVs 



Complex rearrangements and oncogene amplifications revealed by long-read DNA 
and RNA sequencing of a breast cancer cell line

Nattestad et al. (2018) Genome Research. doi: 10.1101/gr.231100.117

Highlights

• Finding 10s of thousands of additional variants
• PCR validation confirms high accuracy of long reads
• Detect many novel gene fusions

• Identify early vs late mutations in the cancer



Oxford Nanopore Sequencing
• Thumb drive sized sequencer 

powered over USB

• Capacity for 512 reads at once

• Senses DNA by measuring 
changes to ion flow



Nanopore Sequencing



Nanopore Basecalling

Originally HMM based base calling, quickly shifting to RNN approaches



Oxford Nanopore Sequencing

MinION

$1k / instrument
~$15k / human @ 50x

Long reads, Low throughput

PromethION

$75k / instrument
~$4k / human @ 50x

Long reads, High throughput



Taking Nanopore Sequencing into the Clinic

Mechanical/

enzymatic
Purification

Plating on Matrigel

Add growth factors

ü Stable Growth in 3D

ü Recapitulate tumor pathology 

& treatment response

ü Maintenance of tissue/tumor 

heterogeneity

ü “2017 Method of the Year” -

Nature Methods

Tumor organoids in culture

Resected primary 

tumor

Karen KostroffDavid Spector



Oxford Nanopore Sequencing Results

Tissue source impacts 
read length

Tissue source impacts 
yield per flow cell

Extracting high molecular weight DNA remains challenging

While organoids are a much better source of HMW DNA than primary 
tumor, slow growth and difficult extractions make progress slow going

Recent PromethION runs have been transformative: 
Over 70Gbp on a single flowcell

Sequencing by W. Richard McCombie @ CSHL
Winston Timp @ JHU 



Preliminary Structural Variations Analysis

Total Deletions Duplications Insertions Inversions Translocations
All SVs in normal 9816 5225 578 3727 130 156
All SVs in tumor 13737 7020 988 5292 202 235

SVs only in tumor
(Also exclude 

NA12878)
3662 1805 420 1250 98 89



Preliminary Structural Variations Analysis

Total Deletions Duplications Insertions Inversions Translocations
All SVs in normal 9816 5225 578 3727 130 156
All SVs in tumor 13737 7020 988 5292 202 235

SVs only in tumor
(Also exclude 

NA12878)
3662 1805 420 1250 98 89

62bp repeat expansion in 
BRCA1 detected in normal 
tissue that is undetectable 
using a panel or short read 
sequencing



In pursuit of perfect genome sequencing
New sequencing technologies combined with new algorithms are 
revealing a universe of new genomic variants to study
• Tens of thousands of SVs per person, many megabases of variation

• Identification of novel cancer drivers
• Identification of novel genetic risk factors
• Identification of novel isoforms and fusion genes
• Identification of novel tumor virus and transposable element insertions
• Identification of novel genomic and transcriptomic epigenetic modifications
• Enhanced study of tumor progression, allele-specific factors
• …

http://schatz-lab.org

NGM+Sniffles RibbonSURVIVOR AssemblyticsLRSimFALCON



Computational Research Landscape
• Avoid

• New Illumina/PacBio base callers
• Entirely new genome assembler from scratch

• Good
• Alignment/Assembly/Analysis methods robust to errors, polyploidy, aneuploidy
• Use insights from long-reads to improve analysis of short-reads

• Best
• Synthesis of large numbers of samples (“pan-genome assembly”)
and/or multiple data types (“multi-omics”)

• Prioritization and interpretation of variations

http://schatz-lab.org

NGM+Sniffles RibbonSURVIVOR AssemblyticsLRSimFALCON



Piercing the dark matter:  bioinformatics of long- range sequencing and mapping
Sedlazeck et al (2018) Nature Reviews Genetics. doi:10.1038/s41576-018-0003-4 
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AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAATATAGGCA
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CGCTGGCGCAATTGAAAACTTTCGTCGATCAGGAATTTGCCCAAATAAAACATGTCCTGCATGGCATTAGTTTGTTGGGGCAGTGCCCGGATAGCATCAACGCTGCGCTGATTTGCCGTGGCGAGAAAATGTCGATCGCCATTATGGC
CGGCGTATTAGAAGCGCGCGGTCACAACGTTACTGTTATCGATCCGGTCGAAAAACTGCTGGCAGTGGGGCATTACCTCGAATCTACCGTCGATATTGCTGAGTCCACCCGCCGTATTGCGGCAAGCCGCATTCCGGCTGATCACATG
GTGCTGATGGCAGGTTTCACCGCCGGTAATGAAAAAGGCGAACTGGTGGTGCTTGGACGCAACGGTTCCGACTACTCTGCTGCGGTGCTGGCTGCCTGTTTACGCGCCGATTGTTGCGAGATTTGGACGGACGTTGACGGGGTCTATA
CCTGCGACCCGCGTCAGGTGCCCGATGCGAGGTTGTTGAAGTCGATGTCCTACCAGGAAGCGATGGAGCTTTCCTACTTCGGCGCTAAAGTTCTTCACCCCCGCACCATTACCCCCATCGCCCAGTTCCAGATCCCTTGCCTGATTAA
AAATACCGGAAATCCTCAAGCACCAGGTACGCTCATTGGTGCCAGCCGTGATGAAGACGAATTACCGGTCAAGGGCATTTCCAATCTGAATAACATGGCAATGTTCAGCGTTTCTGGTCCGGGGATGAAAGGGATGGTCGGCATGGCG
GCGCGCGTCTTTGCAGCGATGTCACGCGCCCGTATTTCCGTGGTGCTGATTACGCAATCATCTTCCGAATACAGCATCAGTTTCTGCGTTCCACAAAGCGACTGTGTGCGAGCTGAACGGGCAATGCAGGAAGAGTTCTACCTGGAAC
TGAAAGAAGGCTTACTGGAGCCGCTGGCAGTGACGGAACGGCTGGCCATTATCTCGGTGGTAGGTGATGGTATGCGCACCTTGCGTGGGATCTCGGCGAAATTCTTTGCCGCACTGGCCCGCGCCAATATCAACATTGTCGCCATTGC
TCAGGGATCTTCTGAACGCTCAATCTCTGTCGTGGTAAATAACGATGATGCGACCACTGGCGTGCGCGTTACTCATCAGATGCTGTTCAATACCGATCAGGTTATCGAAGTGTTTGTGATTGGCGTCGGTGGCGTTGGCGGTGCGCTG
CTGGAGCAACTGAAGCGTCAGCAAAGCTGGCTGAAGAATAAACATATCGACTTACGTGTCTGCGGTGTTGCCAACTCGAAGGCTCTGCTCACCAATGTACATGGCCTTAATCTGGAAAACTGGCAGGAAGAACTGGCGCAAGCCAAAG
AGCCGTTTAATCTCGGGCGCTTAATTCGCCTCGTGAAAGAATATCATCTGCTGAACCCGGTCATTGTTGACTGCACTTCCAGCCAGGCAGTGGCGGATCAATATGCCGACTTCCTGCGCGAAGGTTTCCACGTTGTCACGCCGAACAA
AAAGGCCAACACCTCGTCGATGGATTACTACCATCAGTTGCGTTATGCGGCGGAAAAATCGCGGCGTAAATTCCTCTATGACACCAACGTTGGGGCTGGATTACCGGTTATTGAGAACCTGCAAAATCTGCTCAATGCAGGTGATGAA
TTGATGAAGTTCTCCGGCATTCTTTCTGGTTCGCTTTCTTATATCTTCGGCAAGTTAGACGAAGGCATGAGTTTCTCCGAGGCGACCACGCTGGCGCGGGAAATGGGTTATACCGAACCGGACCCGCGAGATGATCTTTCTGGTATGG
ATGTGGCGCGTAAACTATTGATTCTCGCTCGTGAAACGGGACGTGAACTGGAGCTGGCGGATATTGAAATTGAACCTGTGCTGCCCGCAGAGTTTAACGCCGAGGGTGATGTTGCCGCTTTTATGGCGAATCTGTCACAACTCGACGA
TCTCTTTGCCGCGCGCGTGGCGAAGGCCCGTGATGAAGGAAAAGTTTTGCGCTATGTTGGCAATATTGATGAAGATGGCGTCTGCCGCGTGAAGATTGCCGAAGTGGATGGTAATGATCCGCTGTTCAAAGTGAAAAATGGCGAAAAC
GCCCTGGCCTTCTATAGCCACTATTATCAGCCGCTGCCGTTGGTACTGCGCGGATATGGTGCGGGCAATGACGTTACAGCTGCCGGTGTCTTTGCTGATCTGCTACGTACCCTCTCATGGAAGTTAGGAGTCTGACATGGTTAAAGTT
TATGCCCCGGCTTCCAGTGCCAATATGAGCGTCGGGTTTGATGTGCTCGGGGCGGCGGTGACACCTGTTGATGGTGCATTGCTCGGAGATGTAGTCACGGTTGAGGCGGCAGAGACATTCAGTCTCAACAACCTCGGACGCTTTGCCG
ATAAGCTGCCGTCAGAACCACGGGAAAATATCGTTTATCAGTGCTGGGAGCGTTTTTGCCAGGAACTGGGTAAGCAAATTCCAGTGGCGATGACCCTGGAAAAGAATATGCCGATCGGTTCGGGCTTAGGCTCCAGTGCCTGTTCGGT
GGTCGCGGCGCTGATGGCGATGAATGAACACTGCGGCAAGCCGCTTAATGACACTCGTTTGCTGGCTTTGATGGGCGAGCTGGAAGGCCGTATCTCCGGCAGCATTCATTACGACAACGTGGCACCGTGTTTTCTCGGTGGTATGCAG
TTGATGATCGAAGAAAACGACATCATCAGCCAGCAAGTGCCAGGGTTTGATGAGTGGCTGTGGGTGCTGGCGTATCCGGGGATTAAAGTCTCGACGGCAGAAGCCAGGGCTATTTTACCGGCGCAGTATCGCCGCCAGGATTGCATTG
CGCACGGGCGACATCTGGCAGGCTTCATTCACGCCTGCTATTCCCGTCAGCCTGAGCTTGCCGCGAAGCTGATGAAAGATGTTATCGCTGAACCCTACCGTGAACGGTTACTGCCAGGCTTCCGGCAGGCGCGGCAGGCGGTCGCGGA
AATCGGCGCGGTAGCGAGCGGTATCTCCGGCTCCGGCCCGACCTTGTTCGCTCTGTGTGACAAGCCGGAAACCGCCCAGCGCGTTGCCGACTGGTTGGGTAAGAACTACCTGCAAAATCAGGAAGGTTTTGTTCATATTTGCCGGCTG
GATACGGCGGGCGCACGAGTACTGGAAAACTAAATGAAACTCTACAATCTGAAAGATCACAACGAGCAGGTCAGCTTTGCGCAAGCCGTAACCCAGGGGTTGGGCAAAAATCAGGGGCTGTTTTTTCCGCACGACCTGCCGGAATTCA
GCCTGACTGAAATTGATGAGATGCTGAAGCTGGATTTTGTCACCCGCAGTGCGAAGATCCTCTCGGCGTTTATTGGTGATGAAATCCCACAGGAAATCCTGGAAGAGCGCGTGCGCGCGGCGTTTGCCTTCCCGGCTCCGGTCGCCAA
TGTTGAAAGCGATGTCGGTTGTCTGGAATTGTTCCACGGGCCAACGCTGGCATTTAAAGATTTCGGCGGTCGCTTTATGGCACAAATGCTGACCCATATTGCGGGTGATAAGCCAGTGACCATTCTGACCGCGACCTCCGGTGATACC
GGAGCGGCAGTGGCTCATGCTTTCTACGGTTTACCGAATGTGAAAGTGGTTATCCTCTATCCACGAGGCAAAATCAGTCCACTGCAAGAAAAACTGTTCTGTACATTGGGCGGCAATATCGAAACTGTTGCCATCGACGGCGATTTCG
ATGCCTGTCAGGCGCTGGTGAAGCAGGCGTTTGATGATGAAGAACTGAAAGTGGCGCTAGGGTTAAACTCGGCTAACTCGATTAACATCAGCCGTTTGCTGGCGCAGATTTGCTACTACTTTGAAGCTGTTGCGCAGCTGCCGCAGGA
GACGCGCAACCAGCTGGTTGTCTCGGTGCCAAGCGGAAACTTCGGCGATTTGACGGCGGGTCTGCTGGCGAAGTCACTCGGTCTGCCGGTGAAACGTTTTATTGCTGCGACCAACGTGAACGATACCGTGCCACGTTTCCTGCACGAC
GGTCAGTGGTCACCCAAAGCGACTCAGGCGACGTTATCCAACGCGATGGACGTGAGTCAGCCGAACAACTGGCCGCGTGTGGAAGAGTTGTTCCGCCGCAAAATCTGGCAACTGAAAGAGCTGGGTTATGCAGCCGTGGATGATGAAA
CCACGCAACAGACAATGCGTGAGTTAAAAGAACTGGGCTACACTTCGGAGCCGCACGCTGCCGTAGCTTATCGTGCGCTGCGTGATCAGTTGAATCCAGGCGAATATGGCTTGTTCCTCGGCACCGCGCATCCGGCGAAATTTAAAGA
GAGCGTGGAAGCGATTCTCGGTGAAACGTTGGATCTGCCAAAAGAGCTGGCAGAACGTGCTGATTTACCCTTGCTTTCACATAATCTGCCCGCCGATTTTGCTGCGTTGCGTAAATTGATGATGAATCATCAGTAAAATCTATTCATT
ATCTCAATCAGGCCGGGTTTGCTTTTATGCAGCCCGGCTTTTTTATGAAGAAATTATGGAGAAAAATGACAGGGAAAAAGGAGAAATTCTCAATAAATGCGGTAACTTAGAGATTAGGATTGCGGAGAATAACAACCGCCGTTCTCAT
CGAGTAATCTCCGGATATCGACCCATAACGGGCAATGATAAAAGGAGTAACCTGTGAAAAAGATGCAATCTATCGTACTCGCACTTTCCCTGGTTCTGGTCGCTCCCATGGCAGCACAGGCTGCGGAAATTACGTTAGTCCCGTCAGT
AAAATTACAGATAGGCGATCGTGATAATCGTGGCTATTACTGGGATGGAGGTCACTGGCGCGACCACGGCTGGTGGAAACAACATTATGAATGGCGAGGCAATCGCTGGCACCTACACGGACCGCCGCCACCGCCGCGCCACCATAAG
AAAGCTCCTCATGATCATCACGGCGGTCATGGTCCAGGCAAACATCACCGCTAAATGACAAATGCCGGGTAACAATCCGGCATTCAGCGCCTGATGCGACGCTGGCGCGTCTTATCAGGCCTACGTTAATTCTGCAATATATTGAATC
TGCATGCTTTTGTAGGCAGGATAAGGCGTTCACGCCGCATCCGGCATTGACTGCAAACTTAACGCTGCTCGTAGCGTTTAAACACCAGTTCGCCATTGCTGGAGGAATCTTCATCAAAGAAGTAACCTTCGCTATTAAAACCAGTCAG
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