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I. Why “Perfect’?




Genetic Origins of Human Diversity

GWAS Catalog contains 33,674 unique SNP-trait associations.
OMIM contains records for more than 5000 traits with known molecular basis
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Somatc MuAtion prevalence
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Somatic Mutations In Cancer
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Signatures of mutational processes in human cancer
Alexandrov et al (2013) Nature. doi:10.1038/nature 12477




Mammalian Evolution

Digits and fin rays share common developmental histories
Nakamura et al (2016) Nature. 537,225-228. doi:10.1038/nature 9322




“Needles in a stack of needles”
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Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data
Cooper & Shendure (201 1) Nature Reviews Genetics.



In pursuit of perfect genome sequencing

I. Why “Perfect’?
Because it is important, complex, and diffuse
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2. What is “Perfect’”?




|I. Correctness:
Is the genome faithfully represented!?




|I. Correctness:
Is the genome faithfully represented!?

. TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG
PacBio RS |l

TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG

ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG

A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG

CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG

C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG

TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA

T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA

-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA

GAGGAGG—---AA————- GAATATCTGAT-AAAGATTACAAATT-GAGTGA

ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT

ACTAAATTCACAA-ATAATAACACTTTTAGACAAAATTGATGGGAAGGTT

0 10k 20k 30k 40k TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA
CSHL/PacBio LELEEEEEEEr FErrrr e e teee terrer terer Trrrrrd

TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA

Sample of 100k reads aligned with BLASR requiring >100bp alignment
Average overall accuracy: 83.7%, 1 1.5% insertions, 3.4% deletions, |.4% mismatch



Genotyping Theory

Heterozygous variant (3/7) Homozygous variant (6/6)
AW
( GATRATAC..
..CCATAG IGITGCGCCC CGGRARATTT CQGTLATAC
..CCAT CTATGTGCG TCGGARATT GGIATAC
Subject { ~CCAT GGCTATGIG CTATCGGARAL GCGGCATA
..CCA AGGC%%:: CCTATCGGZ TTGCGATA C
ATZ2
| A

Reference | CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC...

Error or Het (1/7)?

* If there were no sequencing errors, identifying SNPs would be trivial:

— Any time a read disagrees with the reference, it must be a variant!

* A ssingle read of many differing from the reference is probably just an error, but it
becomes more likely to be real as we see it multiple times

— Use binomial test to evaluate prob. of heterozygosity vs. prob of error

— Coverage (oversampling) is our main tool to improve accuracy



cns error rate

Consensus Accuracy and Coverage
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Coverage can overcome random errors

* Dashed: error model from binomial sampling CNSError = S ( c )(e)i(l_e)n,-

* Solid: observed accuracy iofer]

Hybrid error correction and de novo assembly of single-molecule sequencing reads.
Koren et al (2012) Nature Biotechnology. doi:10.1038/nbt.2280



FALCON Accuracy
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"The overall base-to-base concordance rate is
about 99.99% (QV40 in Phred scale) in the FI

FALCON-Unzip assembly.The insertion and
deletion (indel) concordances to the parental
lines were lower (about QV40) than the SNP
concordance rate (about QV50), with most
residual errors concentrated in long
homopolymer sequences”

Dralt
Primary Conligs +
Haplobigs

¥

Primary Conligs +
Haplotigs
Consensus

' FALCON-Unzip °

(b)

Phased Diploid Genome Assembly with Single Molecule Real-Time Sequencing
Chin et al (2016) Nature Methods. doi:10.1038/nmeth.4035.



2. Completeness:
How much of the genome is present!?




2. Completeness:
How much of the genome is present!?

“88% of GWAS SNPs are intronic or intergenic of unknown function”
ENCODE Consortium (2012)
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Resolving the complexity of the human genome
using single-molecule sequencing

Mark J. P. Chaisson’, John Huddleston'?, Megan Y. Dennis’, Peter H. Sudmant’, Maika Malig', Fereydoun Hormoadiari',

Francesca Antonacci’, Urvashi Surti _
Michael W, Hunkapiller’, Jonas Korlach® & Evan E. Eichler*

The human genome is arguably the most complete mammalian
reference assembly’ ', yet more than 160 euchromatic gaps remain**
and aspects of its structural variation remain poorly understood ten
years after its completion” *. To identify missing sequence and gen-
ctic variation, here we sequence and analyse 3 haploid human genome
(CHM1) using single-molecule, real-time DN A sequencing ™, We dose
or extend 55% of the remaining interstitial gaps in the human GRCh37
reference gmome-m of which carried lo.g runs ofdegmle

within (G+C)-rich genoic reglons. We resolve the complete sequence
of 26,079 cuchromatic structural variants at the base-pair level, indud-
mmmmd“mdmﬂm
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pared to the human reference, we find a significant insertional bias
(3:1) in regions corresponding to complex insertions and long short
tandem repeats, Our results suggest a greater complexity of the human
genome in the form of variation of longer and more complex repet-
itive DN A that can now be largely resolved with the application of

S s e

, Richard Sandstrom’, Matthew Boitano®, Jane M. Landolin®, John A, Stamatoyannopoulos',

for recruiting additional sequence reads for assembly (Supplementary
Information). Using this approach, we closed 50 gaps and extended into
40 others (60 boundaries), adding 398 kb and 721 kb of novel sequence
to the genome, respectively (Supplementary Table 4). The closed gaps
in the human genome were enriched for simple repeats, long tandem
repeats, and high (G + C) content (Fig. 1) but also included novel exons
(Supplementary Table 20) and putative regulatory sequences based on
DNase | hypersensitivity and chromatin immunoprecipitation followed
by high-throughput DNA sequencing (ChIP-seq) analysts (Supplemen-
tary Information). We identified a significant 15-fold enrichment of shoet
tandem repeats (STRs) when 1o a random sample (P < 0.00001)
(Fig. 1a). A total of 78% (39 out of 50) of the dlosed gap sequences were
composed of 10% or more of STRs, The STRs were frequently embedded
in longer, more complex, tandem arrays of degenerate repeats reach-
ing up 1o 8,000 bp in length (Extended Data Fig. 1a—<), some of which
bore resemblance 1o sequences known 1o be toxic to Escherichia coli'®,
Because most human reference sequences''* have been derived from
dones propagated in E. coli, it is perhaps not surprising that the appli-
cation of a long-read sequence technology to uncloned DNA would
resolve such gaps. Moreover, the length and complex degeneracy of these



3. Contiguity
How much context is available?



3. Contiguity
How much context is available?

If you have 99% completeness, are you missing 1% of every gene or are the
missing sequences localized to certain regions?

How far can you go until you hit a gap in resolution?
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Assembly Complexity




Assembly Complexity
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Assembly Complexity




Assembly Complexity

The advantages of SMRT sequencing
Roberts, R], Carneiro, MO, Schatz, MC (2013) Genome Biology. 14:405



Recent Long Read Assemblies

Human Analysis N50 Sizes

25,000,000
20,000,000 ——
15,000,000 —
10,000,000
5,000,000
0 . . .
lllumina Moleculo 10X PacBio
Discovar Prism GemCode FALCON
(contig asm) (phasing) Long Ranger (contig asm)
(phasing)

Third-generation sequencing and the future of genomics
Lee et al (2016) bioRxiv
doi: http://dx.doi.org/10.1101/048603

Structural Variants in CHMI
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Assemblytics: a web analytics tool for the detection of
variants from an assembly

Nattestad & Schatz (2016) Bioinformatics.

doi: 10.1093/bioinformatics/btw369
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In pursuit of perfect genome sequencing

2. What is “Perfect’”?

100% correct, complete, & contiguous
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3. How will we achieve it?




Genomic Sequencing Data

lllumina 10X Genomics PacBio
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Sequence length
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Assembly Contiguity

Cumulative sequence length
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* Includes alt sequences

10X Genomics/SuperNova
« 21 Mbp scaffold N50
* 162 Mbp in scaffold gaps

PacBio/Falcon-unzip
« 7.0 Mbp contig N50

10X Genomics/Supernova
« 50 kbp contig N50

lllumina/MegaHit
« 13 kbp contig N50



Missing Insertions from Short and Linked Read!?

lllumina 10X Genomics PacBio

Variants 50 to 500 bp Variants 50 to 500 bp Variants 50 to 500 bp
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Structural Variations Concordance

Sniffles

Falcon

LongRanger | 5 9231 1.946 | 3,785

SuperNova | 3394|7837 | 1,486

SURVIVOR2 (399 | 2,163 | 2,274 I,646.
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Structural Variations Concordance

Sniffles Main Diagonal
* Calls per tool
Falcon
LongR
ongRranger 3,785
SuperNova
SURVIVOR2
MegaHit 3.855
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Structural Variations Concordance

Main Diagonal

Sniffles PacBio
* Calls per tool
Falcon Outer triplets
* Concordance by Technology
LongRanger 37g5| 10X Genomics
SuperNova 1,486
SURVIVOR2
MegaHit




Sniffles

Falcon

LongRanger

SuperNova

SURVIVOR2

MegaHit

Structural Variations Concordance

PacBio

2,837
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10X Genomics

lllumina
1,378 3,855
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Main Diagonal
* Calls per tool

Outer triplets
* Concordance by Technology

Inner triplets
* Concordance by Assembly



Sniffles

Falcon

LongRanger

SuperNova

SURVIVOR2

MegaHit

Structural Variations Concordance

. PacBio

2,823

10X Genomics

3,291

. lllumina

Main Diagonal
* Calls per tool

Outer triplets
* Concordance by Technology

Inner triplets
* Concordance by Assembly
* Concordance by Mappers



Sniffles

Falcon

LongRanger

SuperNova

SURVIVOR2

MegaHit

Structural Variations Concordance

Main Diagonal
* Calls per tool

Outer triplets
* Concordance by Technology

Inner triplets
* Concordance by Assembly

* Concordance by Mappers

Overall:

lllumina . e need multiple technologies

PacBio

2823 | 1.946 | 3.785| 10X Genomics

3394 | 2,837 | 1.486

3291 | 2,163 | 2,274 I,646.

1858 1.529] 569 | 1.378] 687 |3.855
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In pursuit of perfect genome sequencing

3. How will we achieve it?
Combinations of technologies
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cns error rate

Consensus Accuracy and Coverage
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Coverage can overcome random errors

* Dashed: error model from binomial sampling CNSError = S ( c )(e)i(l_e)n,-

* Solid: observed accuracy iofer]

Hybrid error correction and de novo assembly of single-molecule sequencing reads.
Koren et al (2012) Nature Biotechnology. doi:10.1038/nbt.2280



lllumina Roadmap

lHlumina Novaseq 10X Chromium
$850k instrument cost $125k instrument costs
~$ 1k / human @ 50x ~$2k / human

Short reads, high throughput Linked reads, medium throughput



PacBio Roadmap

PacBio Sequel

$350k instrument cost
~$30k / human @ 50x

Long reads, Medium throughput

SMRTcell v2

IM Zero Mode Waveguides
~15kb average read length
~$1000 / SMRTcell



Oxford Nanopore

y
A
MinlON PromethlION
$1k / instrument $75k / instrument
~$30k / human @ 50x >>]00GB / day
Long reads, Low throughput 222 / human @ 50x

Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome
Goodwin, S, Gurtowski, ], Ethe-Sayers, S, Deshpande, P, Schatz MC* McCombie, WR* (2015) Genome Research doi: 10.1101/gr.191395.115



In pursuit of perfect genome sequencing

* Three C’s of Genome Quality: Correctness, Completeness & Contiguity
* Very excited for combinations of long reads + Hi-C based scaffolding

* Expect new insights on the causes of diseases, forces of evolution

* Multiple sequencing technologies & approaches needed
* PacBio: Best Resolution of SVs
* |OX/HIC: Best Phasing

* We have just begun to explore the universe of variants present

* De novo: Best Resolution of small SVs
* Mapping: Best resolution of large SVs

* Tens of thousands of SVs per person, many megabases of variation
* Also need to push these ideas into single cell and population scale analysis
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Thank you

http://schatz-lab.org
@mike_schatz

Now recruiting postdocs!



