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Unsolved Questions in Biology 
 

•  What is your genome sequence?  
•  How does your genome compare to my genome? 

•  Where are the genes and how active are they? 
•  How does gene activity change during development? 
•  How does splicing change during development? 

•  How does methylation change during development? 
•  How does chromatin change during development? 
•  How does is your genome folded in the cell? 
•  Where do proteins bind and regulate genes? 

•  What virus and microbes are living inside you? 
•  How do your mutations relate to disease? 
•  What drugs and treatments should we give you? 

•  Plus thousands and thousands more 

 
The instruments provide the data, but 
none of the answers to any of these 

questions. 
 

What software and systems will? 
 

And who will create them? 
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Genome Structure & Function 

1.  Structure: Sequencing and Assembly 
  “A tale of two sequencers” 
 
2.  Function: Disease Analytics 
  1.  Pan-genome analysis 
  2.  The role of indels in human diseases 



Sequencing a Genome 

2. Construct assembly graph from overlapping reads 
…AGCCTAGGGATGCGCGACACGT 

       GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC 
          CAACCTCGGACGGACCTCAGCGAA… 

 1. Shear & Sequence DNA 

3. Simplify assembly graph 
 



Assembly Complexity 
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Assembly Complexity 
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The advantages of SMRT sequencing 
Roberts, RJ, Carneiro, MO, Schatz, MC (2013) Genome Biology. 14:405 



N50 size 
Def: 50% of the genome is in contigs as large as the N50 value 

Example:  1 Mbp genome 
 
 
 
 
 

 N50 size = 30 kbp  
  (300k+100k+45k+45k+30k = 520k >= 500kbp) 

 
A greater N50 is indicative of improvement in every dimension: 
•  Better resolution of genes and flanking regulatory regions 
•  Better resolution of transposons and other complex sequences 
•  Better resolution of chromosome organization 
•  Better sequence for all downstream analysis 
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3rd Gen Long Read Sequencing 

PacBio RS II 

CSHL/PacBio 

0 10k 20k 30k 40k 

Oxford Nanopore 

CSHL/ONT 

0 10k 20k 30k 40k 



PacBio SMRT Sequencing 
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http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf 

Imaging of fluorescently phospholinked labeled nucleotides as they are 
incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW). 



SMRT Sequencing Data 
TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG!
||||||||||||||||||||||||| ||||||| |||||||||||| |||!
TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG!
!
ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG!
| |||||| ||||||||||||| |||| | |||||| |||||| ||||||!
A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG!
!
CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG!
| |||||| |||| ||  ||||||||||||||||||||||||||||||||!
C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG!
!
TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA!
| ||||||| |||||||||||||| || ||    |||||||||| |||||!
T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA!
!
-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA!
 ||||||   ||     |||||||| || |||||||||||||| || |||!
GAGGAGG---AA-----GAATATCTGAT-AAAGATTACAAATT-GAGTGA!
!
ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT!
||| ||||||||| | ||||||||||||| ||| ||||||| |||| |||!
ACTAAATTCACAA-ATAATAACACTTTTAGACAAAATTGATGGGAAGGTT!
!
TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA!
|| ||||||||| ||||||| ||| |||| |||||| ||||| |||||||!
TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA!
!
ATCCAGTGGAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG!
||||||| |||||||||  |||||| ||||| ||||||||||||||||||!
ATCCAGT-GAAAATATA--TTATGC-ATCCA-GAACTTATTCACAATTAG!
!

Sample of 100k reads aligned with BLASR requiring >100bp alignment 

Match 83.7% 

Insertions 11.5% 

Deletions 3.4% 

Mismatch 1.4% 



PacBio Assembly Algorithms 

PacBioToCA 
& ECTools 

Hybrid/PB-only Error 
Correction 

 
Koren, Schatz, et al (2012)  
Nature Biotechnology. 30:693–700 

HGAP & Quiver 

PB-only Correction & 
Polishing 

 
Chin et al (2013)  
Nature Methods. 10:563–569 

PBJelly 

Gap Filling  
and Assembly Upgrade 

 
English et al (2012)  
PLOS One. 7(11): e47768 

< 5x > 50x PacBio Coverage 



Consensus Accuracy and Coverage 

Coverage can overcome random errors 
•  Dashed: error model from binomial sampling 
•  Solid: observed accuracy  
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Koren, Schatz, et al (2012)  
Nature Biotechnology. 30:693–700 



S. cerevisiae W303 

83x over 10kbp 

8.7x over 20kb 

PacBio RS II sequencing at CSHL in the McCombie Lab 

•  Size selection using an 7 Kb elution window on a BluePippin™ 
device from Sage Science 

Max: 36,861bp  

Mean: 5910 

Over 175x coverage in  
16 SMRTcells / 2 days 

using P5-C3 



S. cerevisiae W303 
S288C Reference sequence 
•  12.1Mbp; 16 chromo + mitochondria; N50: 924kbp 
 

PacBio assembly using HGAP + Celera Assembler 

•  12.4Mbp; 21 non-redundant contigs; N50: 811kbp; >99.8% id 



S. cerevisiae W303 
S288C Reference sequence 
•  12.1Mbp; 16 chromo + mitochondria; N50: 924kbp 
 

PacBio assembly using HGAP + Celera Assembler 

•  12.4Mbp; 21 non-redundant contigs; N50: 811kbp; >99.8% id 

Near-perfect assembly:  
All but 1 chromosome 
assembled as a single contig 

35kbp repeat cluster 



ECTools: Hybrid Error Correction for large genomes 

Short&Reads&,>&Assemble&Uni5gs&,>&Align&&&Select&,&>&Error&Correct&&
&
"

Can"Help"us"overcome:"
1.  Error"Dense"Regions"–"Longer"sequences"have"more"seeds"to"match"
2.  Simple"Repeats"–"Longer"sequences"easier"to"resolve&
&

However,&cannot&overcome&Illumina&coverage&gaps&&&other&biases&
&

https://github.com/jgurtowski/ectools 



A. thaliana Ler-0 
http://blog.pacificbiosciences.com/2013/08/new-data-release-arabidopsis-assembly.html 

Downsampling experiment 
Accuracy approaches 100% but limited by repeats 



Current Collaborations 

Indica & Aus Rice 
McCombie/Ware/McCouch 

Asian Sea Bass 
Temasek Life Sciences Laboratory  

Pinapple 
UIUC 

P. hominis 
NYU 

M. ligano 
Hannon 





Oxford Nanopore MinION 
•  Thumb drive sized sequencer 

powered over USB 

•  Capacity for 512 reads at once 

•  Senses DNA by measuring 
changes to ion flow 



Nanopore Sequencing 



Nanopore Basecalling 

Basecalling currently performed at Amazon with frequent updates to algorithm 
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Nanopore Readlengths 

Max: 146,992bp  
8x over 20kb 

41x over 10kbp 

Spike-in 

Mean: 5473bp  

noise 

 Oxford Nanopore Sequencing at CSHL 
30 runs, 267k reads, 122x total coverage 

Between 11 and 73k reads per run!  
Mean flow cell: 50 Mbp in 2 days 
Max flow cell: 446Mbp in 2 days 
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Nanopore Alignments 

Max: 50,900bp  
1.8x over 20kb 

13.8x over 10kbp 

Mean: 6903bp  

Alignment Statistics (BLASTN) 
Mean read length at ~7kbp 

Shearing targeted 10kbp 
70k reads align (32%) 

40x coverage 
 



Nanopore Accuracy 
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Alignment Quality (BLASTN) 
Of reads that align, average ~64% identity 
 



Nanopore Accuracy 
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1D mean: 64%
2D mean: 70%

Alignment Quality (BLASTN) 
Of reads that align, average ~64% identity 
“2D base-calling” improves to ~70% identity 



NanoCorr: Nanopore-Illumina  
Hybrid Error Correction 

1.  BLAST Miseq reads to all raw Oxford 
Nanopore reads!

!
2.  Select non-repetitive alignments!

○  First pass scans to remove 
“contained” alignments!

○  Second pass uses Dynamic 
Programming (LIS) to select set of 
high-identity alignments with 
minimal overlaps!

!
3.  Compute consensus of each Oxford 

Nanopore read!
○  Currently using Pacbio’s pbdagcon !

https://github.com/jgurtowski/nanocorr 
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Long Read Assembly 
S288C Reference sequence 
•  12.1Mbp; 16 chromo + mitochondria; N50: 924kbp 
 

Oxford Nanopore!
NanoCorr + Celera Assembler!
•  234 non-redundant contigs!
•  N50: 362kbp !>99.78% id!

Pacific Biosciences!
HGAP + Celera Assembler!
•  21 non-redundant contigs!
•  N50: 811kbp !>99.8% id!





What should we expect from an assembly? 
Analysis of dozens of genomes from across 
the tree of life with real and simulated data 

Summary & Recommendations 
< 100 Mbp:  HGAP/PacBio2CA @ 100x PB C3-P5 

   expect near perfect chromosome arms 
 

< 1GB:   HGAP/PacBio2CA @ 100x PB C3-P5 
   high quality assembly:  contig N50 over 1Mbp 

 

> 1GB:   hybrid/gap filling 
   expect contig N50 to be 100kbp – 1Mbp 

 

> 5GB:   Email mschatz@cshl.edu 
 

Error correction and assembly complexity of single molecule sequencing reads. 
Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz, MC 
http://www.biorxiv.org/content/early/2014/06/18/006395 



Genome Structure & Function 

1.  Structure: Sequencing and Assembly 
  “A tale of two sequencers” 
 
2.  Function: Disease Analytics 
  1.  Pan-genome analysis 
  2.  The role of indels in human diseases 



Pan-Genome Alignment & Assembly 

SplitMEM: Graphical pan-genome analysis with suffix skips 
Marcus, S, Lee, H, Schatz, MC 
http://biorxiv.org/content/early/2014/04/06/003954  

Pan-genome colored de Bruijn graph!
•  Encodes all the sequence 

relationships between the genomes!
•  How well conserved is a given 

sequence?  !
•  What are the pan-genome 

network properties?!

Time to start considering problems 
for which N complete genomes is the 
input to study the “pan-genome”!
•  Available today for many microbial 

species, near future for higher 
eukaryotes!

A"
B"
C"
D"



Graphical pan-genome analysis 
Colored de Bruijn graph 
•  Node for each distinct kmer 
•  Directed edge connects consecutive kmers 
•  Nodes overlap by k-1 bp 

AGA 

GAA 

AAG 

TCC 

GTC 

AGT 

TAA 

ATA 

GTT 

TTA 

AGAAGTCC !
 !

ATAAGTTA !



Graphical pan-genome analysis 
Colored de Bruijn graph 
•  Node for each distinct kmer 
•  Directed edge connects consecutive kmers 
•  Nodes overlap by k-1 bp 

AGAA 

AAGT 

GTCC 

ATAA GTTA 

Other approaches all start from the raw de Bruijn graph, we aim to directly build the 
compressed graph as quickly as possible!

AGAAGTCC !
 !

ATAAGTTA !



Suffix Trees & de Bruijn Graphs 

Key concepts:  
•  Shared sequences form repeats called “maximal exact matches” (MEM) 
•  Easy to identify MEMs in a suffix tree, but may be nested within other MEMs 
•  Use “suffix skips” to quickly decompose MEMs, add in the missing nodes and edges 



Microbial Pan-Genomes 
E. coli (62) and B. anthracis (9) pan-genome analysis!
•  Analyzed all available strains in Genbank!
•  Space and time are linear in the number of genomes!

•  O(n log g) where g is the length of the longest genome!
!

•  Many possible applications: !
•  Identifying “core” genes present in all strains!
•  Characterizing highly variable regions !
•  Cataloging sequences shared by pathogenic varieties!

62 strain E. coli Pan-Genome Node Sharing!



Searching for the genetics behind 
human disorders and plant phenotypes 

Search Strategy 
•  Currently uses WGS or WES short read 

resequencing for economic reasons 

•  Collaborate with Lyon, McCombie, Tuveson, and 
Wigler labs to examine the genetic basis of 
cancer,  ASD, and other psychiatric disorders 

•  Also collaborating with the Lippman,  Ware, and 
Gingeras labs to study high value crops 

Are there any genetic variants present in affected 
individuals, that are not present or are present at a 

substantially reduced rate in their relatives? 



Exome sequencing of the SSC 
The year 2012 was an exciting year for 
autism genetics 
•  3 reports of >593 families from the Simons 

Simplex Collection (parents plus one child 
with autism and one non-autistic sibling) 

•  All attempted to find mutations enriched in 
the autistic children 

•  All used poor or no tools for indels:  
–  Iossifov (343 families) and O’Roak (50 families) used 

GATK UnifiedGenotype 
–  Sanders (200 families) didn’t attempt 

De novo gene disruptions in children on the autism spectrum 
Iossifov et al. (2012) Neuron. 74:2 285-299 
 

De novo mutations revealed by whole-exome sequencing are strongly associated with autism 
Sanders et al. (2012) Nature. 485, 237–241. 
 

Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations 
O’Roak et al. (2012) Nature. 485, 246–250. 



Scalpel: Haplotype Microassembly 
DNA sequence micro-assembly pipeline for accurate 
detection and validation of de novo mutations (SNPs, 
indels) within exome-capture data.  

Features 

1.  Combine mapping and assembly 

2.  Exhaustive search of haplotypes 

3.  De novo mutations 
NRXN1 de novo SNP  

(auSSC12501 chr2:50724605) 

Accurate de novo and transmitted indel detection in exome-capture data using 
microassembly. 
Narzisi, G, O'Rawe, JA, Iossifov, I, Fang, H, Lee, YH, Wang, Z, Wu, Y, Lyon, G, Wigler, M, Schatz MC 
(2014) Nature Methods. doi:10.1038/nmeth.3069 



Scalpel Algorithm 

deletion insertion 

Extract reads mapping within the exon 
including (1) well-mapped reads, (2) soft-
clipped reads, and (3) anchored pairs 

Decompose reads into overlapping    
k-mers and construct de Bruijn graph 
from the reads   

Find end-to-end haplotype paths 
spanning the region 

Align assembled sequences to 
reference to detect mutations 



Experimental Analysis & Validation 

Selected one deep coverage exome 
for deep analysis 
•  Individual was diagnosed with 

ADHD and turrets syndrome 
•  80% of the target at >20x coverage 
•  Evaluated with Scalpel, SOAPindel, 

and GATK Haplotype Caller 
 
 
1000 indels selected for validation 
•  200 Scalpel 
•  200 GATK Haplotype Caller 
•  200 SOAPindel 
•  200 within the intersection 
•  200 long indels (>30bp) 
 
 



Scalpel Indel Validation 
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Scalpel Indel Validation 
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SOAPindel: ABC’BCB’D Scalpel: ABC’B’D 



Scalpel Indel Validation 
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Refined indel analysis 

Reducing INDEL calling errors in whole-genome and exome sequencing data 
Fang, H, Wu, Y, Narzisi, G, O’Rawe, JA, Jimenez Barrón LT, Rosenbaum, J, Ronemus, M, Iossifov I, Schatz, MC§, Lyon, GL§ 

http://www.biorxiv.org/content/early/2014/06/10/006148 

Examine sources of indel errors 
•  Experimental validation of indels called from 30x whole 

genome vs. 110x whole exome of the same sample 
•  Most of the errors due to short microsatellite errors 

introduced during exome capture, also misses most long 
indels 

•  Recommend WGS for indel analysis instead 

All 
INDELs 

Valid PPV INDELs 
>5bp 

Valid 
(>5bp) 

PPV 
(>5bp) 

Intersection 160 152 95.0% 18 18 100% 

WGS 145 122 84.1% 33 25 75.8% 

WES 161 91 56.5% 1 1 100% 



•  In 593 family quads so far, we see significant enrichment in de novo 
likely gene disruptions (LGDs) in the autistic kids 
–  Overall rate basically 1:1 
–  2:1 enrichment in frameshift indels (35:16) 

•  Confirmed trends observed in previous studies, contributed 
dozens of new autism candidate genes. 
–  8 out of 35 indel LGDs in autistic children overlapped with the 

842 FMRP-associated genes 
–  Trends further confirmed in larger study over the entire 

collection that is currently under review 

De novo Genetics of Autism 

Accurate de novo and transmitted indel detection in exome-capture data using microassembly. 
Narzisi et al. (2014) Nature Methods doi:10.1038/nmeth.3069 
 
The burden of de novo coding mutations in autism spectrum disorders.  
Iossifov et al (2014) Under review. 



Understanding Genome  
Structure & Function 

Biotechnology 
–  Sequencing: Illumina, PacBio, Oxford Nanopore, Single Cell approaches 
–  Biochemical assays: RNA-seq, Methyl-seq, Hi-C interactions, *-seq 
–  More accurate sequencing & more detailed functional annotations 

Algorithmics 
–  Highly scalable algorithms and systems 
–  Indexing and analyzing very large sequence datasets, large graphs 
–  Constructing Pan-genomes & inferring regulatory dynamics 

 

Comparative Genomics 
–  Cross species comparisons, models of sequence evolution 
–  Identifying mutations associated with disease and other traits 
–  Genotype-to-phenotype of agricultural and bioenergy species 
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Biological Data Sciences 
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