
splitMEM:
graphical pan-genome analysis
with suffix skips

Shoshana Marcus
May 7, 2014

Outline

1  Overview

2  Data Structures

3  splitMEM Algorithm

4  Pan-genome Analysis

Objective

Compressed de Bruijn graph!
•  Graphical representation

depicts how population
variants relate to each other,
especially where they diverge
at branch points!

•  How well conserved is a
sequence? !

•  What are network properties?!

•  Several complete genomes!
•  Available today for many

microbial species, near future
for higher eukaryotes!

•  Pan-genome: analyze multiple
genomes of species together

A"

B"

C"

D"

Input! Output!

de Bruijn graph
•  Node for each distinct kmer
•  Directed edge connects consecutive kmers
•  Nodes overlap by k-1 bp
•  Self-loops, multi-edges

 AGAAGTCC
 ATAAGTTA

Reconstruct original sequence:
Eulerian path through graph, visit each edge once

•  Merge non-branching chains of nodes
•  Min. number of nodes that preserve path labels

! Usually built from uncompressed graph
! We build directly in O(n log n) time and space

Compressed de Bruijn graph

Compresssed de Bruijn graph

9 strains of Bacillus anthracis k=25

9 strains of Bacillus anthracis k=1000

Compresssed de Bruijn graph

Outline

1  Overview

2  Data Structures

3  splitMEM Algorithm

4  Pan-genome Analysis

•  Each edge is labeled with nonempty substring.
•  No two siblings begin with the same character.
•  Path from root to leaf i spells suffix S[i . . . n].
•  Append special character $ to guarantee each suffix

ends at leaf.

Suffix Tree

•  Rooted, directed
 tree with leaf for
 each suffix.
•  Each internal node,
 except the root,
 has at least two
 children.

suf
1"

"

S"="banana$"

Constructing Suffix Tree

Naïve"Algorithm"

banana$"

suf
1"

"

suf
1"

"

b
a
n
a
n
a
$
"

S"="banana$"

Constructing Suffix Tree

Naïve"Algorithm"

suf
2"

"
anana$"

suf
2"

"

suf
1"

"

S"="banana$"

Constructing Suffix Tree

Naïve"Algorithm"

suf
2"

"
nana$"

suf
3"

"suf
3"

"
n
a
n
a
$
"

suf
1"

"

S"="banana$"

Constructing Suffix Tree

Naïve"Algorithm"

suf
2"

" suf
3"

"
n
a
n
a
$
"

ana$"

suf
4"

"

suf
1"

"

b
a
n
a
n
a
$
"

S"="banana$"

Constructing Suffix Tree

Naïve"Algorithm"

suf
2"

" suf
3"

"

suf
4"

"

ana$"

suf
4"

"

suf
1"

"
b
a
n
a
n
a
$
"

S"="banana$"

Constructing Suffix Tree

Naïve"Algorithm"

n
a
"

suf
2"

"

banana$"

anana$"

nana$"

ana$"

na$"

a$"

$"

suf
1"

suf
2"

suf
3"

suf
4"

suf
5"

suf
6
"

suf
7"

"

suf
3"

"
suf

4"

"

O(n2)"Eme"

suf
5"

"

suf
7"

"

$"suf
6"

"

suf
1"

"

Constructing Suffix Tree

O(n)"Eme"

suf
2"

" suf
3"

"
suf

4"

"

suf
5"

"

suf
7"

"

$"suf
6"

"

On#line'Construc/n'of'Suffix'Trees,""E."Ukkonen"
Algorithmica"(1995)""

b
a
n
a
n
a
$
"

n
a
"

Suffix"Links"

"

ana"" """na"""

" ""

" "a"

suf
1"

"

S"="banana$"

Suffix Tree Query

suf
2"

" suf
3"

"
suf

4"

"

suf
5"

"

suf
7"

"

$"suf
6"

"

Search for ban b
a
n
a
n
a
$
"

n
a
"

suf
1"

"

S"="banana$"

Suffix Tree Query

suf
2"

" suf
3"

"
suf

4"

"

suf
5"

"

suf
7"

"

$"suf
6"

"

Search for ban b
a
n
a
n
a
$
"

n
a
"

suf
1"

"

S"="banana$"

Suffix Tree Query

suf
2"

" suf
3"

"
suf

4"

"

suf
5"

"

suf
7"

"

$"suf
6"

"

Search for ban ba
n
a
n
a
$
"

n
a
"

suf
1"

"

S"="banana$"

Suffix Tree Query

suf
2"

" suf
3"

"
suf

4"

"

suf
5"

"

suf
7"

"

$"suf
6"

"

Search for ban

Found 1
occurrence

ban
a
n
a
$
"

n
a
"

suf
1"

"

S"="banana$"

Suffix Tree Query

suf
2"

" suf
3"

"
suf

4"

"

suf
5"

"

suf
7"

"

$"suf
6"

"

Search for band

Not found
ban

a
n
a
$
"

n
a
"

suf
1"

"

S"="banana$"

Suffix Tree Query

suf
2"

" suf
3"

"
suf

4"

"

suf
5"

"

suf
7"

"

$"suf
6"

"

Search for an

Found 2
occurrences

b
a
n
a
n
a
$
"

n
a
"

Suffix Tree
! Many applications in computational biology
! Linear time construction algorithms

Linear time solutions to

•  Genome alignment
•  Finding longest common substring
•  All-pairs suffix-prefix matching
•  Locating all maximal repetitions
•  And many more…

MEMs

T G C A C G C A A

Maximal"Exact"Match"(MEM)""

Exact"match"within"sequence"that"cannot"be"

extended"leT"or"right"without"introducing"

mismatch."

We"are"interested"

in"MEMs""length"≥ k"

MEMs
Maximal Exact Match (MEM)
Exact match within sequence that cannot be
extended left or right without introducing
mismatch.

MEMs are internal nodes in the suffix tree that
have left-diverse descendants.
(have descendant leaves that represent suffixes
with different characters preceding them)

! Linear-time suffix tree traversal to locate MEMs.

suf
1"

"
b
a
n
a
n
a
$
"

S"="banana$"

MEMs in Suffix Tree

n
a
"

suf
2"

"

banana$"

anana$"

nana$"

ana$"

na$"

a$"

$"

suf
1"

suf
2"

suf
3"

suf
4"

suf
5"

suf
6
"

suf
7"

"

suf
3"

"
suf

4"

"

suf
5"

"

suf
7"

"

$"suf
6"

"

MEMs are internal nodes in suffix
tree with left-diverse descendants

MEM?

MEM?

MEM?

Possible MEMs: a, ana, na

suf
1"

"
b
a
n
a
n
a
$
"

S"="banana$"

MEMs in Suffix Tree

n
a
"

suf
2"

"

banana$"
nana$"

suf
2"

suf
4"

"

suf
3"

"
suf

4"

"

suf
5"

"

suf
7"

"

$"suf
6"

" MEM?

MEM?

MEM?

MEMs: a, ana

MEMs are internal nodes in suffix
tree with left-diverse descendants

!
!

suf
1"

"
b
a
n
a
n
a
$
"

S"="banana$"

MEMs in Suffix Tree

n
a
"

suf
2"

" suf
3"

"
suf

4"

"

suf
5"

"

suf
7"

"

$"suf
6"

"
MEM?

MEMs: a, ana

MEMs are internal nodes in suffix
tree with left-diverse descendants

anana$"
ana$"

suf
3"

suf
5"

"XMEM

MEM

Outline

1  Overview

2  Data Structures

3  splitMEM Algorithm

4  Pan-genome Analysis

Compresssed de Bruijn graph

 Input:
AGAAGTCC$ATAAGTTA

Types of nodes:
i.  repeatNodes
ii.  uniqueNodes

splitMEM
Nodes in compressed de Bruijn graph classified as
i.  repeatNodes
ii.  uniqueNodes

Algorithm:
1  Construct set of repeatNodes
2  Sort start positions of repeatNodes
3  Create edges and uniqueNodes to link non-

contiguous repeatNodes

1  Construct set of repeatNodes
1.  Build suffix tree of genome
2.  Mark internal nodes that are MEMs, length ≥ k
3.  Preprocess suffix tree for LMA queries

4.  Compute repeatNodes in compressed de Bruijn

graph by decomposing MEMs and extracting
overlapping components, length ≥ k

repeatNodes

1 MEM occurs twice

 GCA"

T G C A C … G G C A A

Overlapping MEMs

T G C C AT C G C C A A C C AT

T G C C AT C G C C A A C C AT

Tandem Repeat

AGGCTTGGCTTGGCTTGGCTA
AGGCTTGGCTTGGCTTGGCTA

AGGCTTGGCTTGGCTTGGCTA

AGGCTTGGCTTGGCTTGGCTA
AGGCTTGGCTTGGCTTGGCTA

1  Construct set of repeatNodes
1.  Build suffix tree of genome
2.  Mark internal nodes that are MEMs, length ≥ k
3.  Preprocess suffix tree for LMA queries

4.  Compute repeatNodes in compressed de Bruijn

graph by decomposing MEMs and extracting
overlapping components, length ≥ k

repeatNodes

…" …" …" …"

 α"

 α�β" α�γ"

 x y z �α"
 u�α"

 α"
 β"
"

z α"
"
"

MEM"

MEM"

" " x"x "y "z " "α β y"x "y "z " "α β u" "α γ "

Split"MEM"to"repeatNodes"

…" …" …" …"

 x y z α β" α"
 β"
"

z α"
"
"

MEM"

MEM"

" " x"x "y "z " "α β y"x "y "z " "α β u" "α γ "

Split"MEM"to"repeatNodes"

Find"MEM"in"suffix"tree."

…" …" …" …"

 α"
 β"
"

z α"
"
"

MEM"

MEM"

" " x"x "y "z " "α β y"x "y "z " "α β u" "α γ "

Split"MEM"to"repeatNodes"

Traverse"suffix"link."

Look"for"MEM"as"ancestor."

 x y z α β"

…" …" …" …"

 α"
 β"
"

z α"
"
"

MEM"

MEM"

" " x"x "y "z " "α β y"x "y "z " "α β u" "α γ "

Split"MEM"to"repeatNodes"

Traverse"suffix"link."

Look"for"MEM"as"ancestor."

 x y z α β"

…" …" …" …"

 α"
 β"
"

z α"
"
"

MEM"

MEM"

" " x"x "y "z " "α β y"x "y "z " "α β u" "α γ "

Split"MEM"to"repeatNodes"

Traverse"suffix"link."

Look"for"MEM"as"ancestor."

 x y z α β"

…" …" …" …"

 α"

 α�β" α�γ"

 x y z �α"
 u�α"

 α"
 β"
"

z α"
"
"

MEM"

MEM"

" " x"x "y "z " "α β y"x "y "z " "α β u" "α γ "

Split"MEM"to"repeatNodes"

Found"MEM"as"ancestor.""Decompose."

Remove"embedded"MEM"(suffix"links)."Find"next"embedded"MEM."

Suffix Skips
!  Reduce O(n2) time to O(n log n) time

Suffix link: quickly navigate to distant part of tree
o Pointer from internal node labeled xS to node S
o Trim 1 character in O(1) time
o Trim c characters in O(c) time

Suffix skip:
o Trim c characters in O(log c) time

Genome: babab

!

Additional Preprocessing: !

pointer jumping to rapidly add additional links!

Suffix skips 0
(dist = 1; suffix links)

Suffix skips 1
(dist=2)

Suffix skips 2
(dist=4)

Suffix Skips

splitMEM
•  splitMEM software

o C++
o open source http://splitmem.sourceforge.net

•  Input modes:
o single genome: fasta file
o pan-genome: multi-fasta file

•  Multi k-mer
construct several compressed de Bruijn graphs
without rebuilding suffix tree

Outline

1  Overview

2  Data Structures

3  splitMEM Algorithm

4  Pan-genome Analysis

Pan-genome analysis
 B. Anthracis and E. coli
Examine graph properties:
•  Number nodes, edges, avg. degree
•  Node length distribution
•  Genome sharing among nodes
•  Distribution of node distances to

 core genome
Other properties that can be studied:
•  Girth, Diameter, Modularity, Network Motifs, etc.
•  Functional enrichment of highly conserved or

genome specific genes.

Pan-genome analysis

Pan-genome analysis
Graphs of main chromosomes
•  9 strains of Bacillus anthracis
•  Selection of 9 strains of Escherichia coli

Species K Nodes Edges Avg. Degree

B. anthracis 25 103926 138468 1.33
B. anthracis 100 41343 54954 1.32
B. anthracis 1000 6627 8659 1.30

E. coli 25 494783 662081 1.33
E. coli 100 230996 308256 1.33
E. coli 1000 11900 15695 1.31

Pan-genome analysis
 B. Anthracis and E. coli
Examine graph properties
•  Node length distribution
•  Genome sharing among nodes
•  Distribution of node distances

to core genome

 Histogram of Node Lengths

Pan-genome analysis

 Histogram of Node Lengths

Pan-genome analysis

Spike at 2k:
SNPs

Pan-genome analysis
 B. Anthracis and E. coli
Examine graph properties
•  Node length distribution
•  Genome sharing among nodes
•  Distribution of node distances

to core genome

Fraction of nodes with each level of genome sharing

B. anthracis

E. coli

Pan-genome analysis

Pan-genome analysis
 B. Anthracis and E. coli
Examine graph properties
•  Node length distribution
•  Genome sharing among nodes
•  Distribution of node distances

to core genome

Pan-genome analysis
Graph encodes sequence context of segments.
Core genome: subsequences that occur in at
least 70% of underlying genomes.

Nodes can be further
in terms of hops while
closer by base pairs.

Branch and
Bound Search

Pan-genome analysis

 Node distances to core genome

Searched 1000-
hop radius

Summary
•  Identify pan-genome relationships graphically.
•  Topological relationship between suffix tree and

compressed de Bruijn graph.
•  Direct construction of compressed de Bruijn

graph for single or pan-genome.
•  Introduce suffix skips.
•  Explore pan-genome graphs of B. anthracis, E. coli.

SplitMEM: Graphical pan-genome analysis with suffix skips.
Marcus, S, Lee, H, Schatz, MC (2014) BioRxiv
http://biorxiv.org/content/early/2014/04/06/003954

Future work
Improve splitMEM software:
•  Reduce space using compressed full-text index instead

of suffix tree
•  Approximate indexing of strains to form a pan-genome

graph
•  Alignment of reads to pan-genome

Biological applications:
•  Functional enrichment of core-genome and genome

specific segments
•  Expand study to larger collection of microbes and

larger genomes

Acknowledgments
Michael Schatz
Hayan Lee
Giuseppe Narzisi
James Gurtowski
Schatz Lab

IT department

Todd Heywood

Thank You!

Pan-genome analysis
Branch and bound search (like Dijkstra’s shortest path
algorithm) to compute bp distance from each non-core
node to core genome:
Traverse all distinct paths from source until

o a core node is reached
o current node was visited

 by a shorter path

Bounded search
once a core node is found, its distance bounds
maximum search distance along other paths

OR

