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Objective 

Compressed de Bruijn graph!
•  Graphical representation 

depicts how population 
variants relate to each other, 
especially where they diverge 
at branch points!

•  How well conserved is a 
sequence?  !

•  What are network properties?!

•  Several complete genomes!
•  Available today for many 

microbial species, near future 
for higher eukaryotes!

•  Pan-genome: analyze multiple 
genomes of species together 

A"

B"
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D"

Input! Output!



de Bruijn graph 
•  Node for each distinct kmer 
•  Directed edge connects consecutive kmers 
•  Nodes overlap by k-1 bp 
•  Self-loops, multi-edges 
 

  AGAAGTCC 
  ATAAGTTA 

 
 

Reconstruct original sequence: 
Eulerian path through graph, visit each edge once 

 



•  Merge non-branching chains of nodes 
•  Min. number of nodes that preserve path labels 

 
 
 

! Usually built from uncompressed graph 
! We build directly in O(n log n) time and space 

Compressed de Bruijn graph 



Compresssed de Bruijn graph 
  
 
 
 
 
 
 
 
9 strains of Bacillus anthracis k=25 



  
 
 
 
 
 
 
 
9 strains of Bacillus anthracis k=1000 

Compresssed de Bruijn graph 
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•  Each edge is labeled with nonempty substring.  
•  No two siblings begin with the same character.  
•  Path from root to leaf i spells suffix S[i . . . n].  
•  Append special character $ to guarantee each suffix 

ends at leaf. 

Suffix Tree 

•  Rooted, directed  
    tree with leaf for  
    each suffix.  
•  Each internal node, 
    except the root,  
    has at least two       
    children. 
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Suffix Tree 
! Many applications in computational biology 
! Linear time construction algorithms  
 
Linear time solutions to  

•  Genome alignment 
•  Finding longest common substring 
•  All-pairs suffix-prefix matching 
•  Locating all maximal repetitions 
•  And many more… 



MEMs 

T G C A C G C A A  

Maximal"Exact"Match"(MEM)""

Exact"match"within"sequence"that"cannot"be"

extended"leT"or"right"without"introducing"

mismatch."

We"are"interested"

in"MEMs""length"≥ k"



MEMs 
Maximal Exact Match (MEM)  
Exact match within sequence that cannot be 
extended left or right without introducing 
mismatch. 

MEMs are internal nodes in the suffix tree that 
have left-diverse descendants.  
(have descendant leaves that represent suffixes 
with different characters preceding them) 
 

! Linear-time suffix tree traversal to locate MEMs. 
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Compresssed de Bruijn graph 

  Input:   
AGAAGTCC$ATAAGTTA 

Types of nodes: 
i.  repeatNodes 
ii.  uniqueNodes 



splitMEM 
Nodes in compressed de Bruijn graph classified as 
i.  repeatNodes 
ii.  uniqueNodes 

Algorithm: 
1  Construct set of repeatNodes 
2  Sort start positions of repeatNodes 
3  Create edges and uniqueNodes to link non-

contiguous repeatNodes 



1  Construct set of repeatNodes 
1.  Build suffix tree of genome 
2.  Mark internal nodes that are MEMs, length ≥ k 
3.  Preprocess suffix tree for LMA queries 
 
4.  Compute repeatNodes in compressed de Bruijn 

graph by decomposing MEMs and extracting 
overlapping components, length ≥ k 

repeatNodes 



1 MEM occurs twice 

 GCA"

T G C A C … G G C A A  



Overlapping MEMs 

T G C C AT C G C C A A C C AT  

T G C C AT C G C C A A C C AT  



Tandem Repeat 

AGGCTTGGCTTGGCTTGGCTA 
AGGCTTGGCTTGGCTTGGCTA 

AGGCTTGGCTTGGCTTGGCTA 

AGGCTTGGCTTGGCTTGGCTA 
AGGCTTGGCTTGGCTTGGCTA 



1  Construct set of repeatNodes 
1.  Build suffix tree of genome 
2.  Mark internal nodes that are MEMs, length ≥ k 
3.  Preprocess suffix tree for LMA queries 
 
4.  Compute repeatNodes in compressed de Bruijn 

graph by decomposing MEMs and extracting 
overlapping components, length ≥ k 

repeatNodes 
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Suffix Skips 
!  Reduce O(n2) time to O(n log n) time 

Suffix link: quickly navigate to distant part of tree 
o Pointer from internal node labeled xS to node S  
o Trim 1 character in O(1) time 
o Trim c characters in O(c) time 

Suffix skip:  
o Trim c characters in O(log c) time 



Genome: babab 

!

Additional Preprocessing: !

pointer jumping to rapidly add additional links!

Suffix skips 0 
(dist = 1; suffix links) 

Suffix skips 1 
(dist=2) 

Suffix skips 2 
(dist=4) 

Suffix Skips 



splitMEM 
•  splitMEM software 

o C++ 
o open source  http://splitmem.sourceforge.net 

•  Input modes: 
o single genome: fasta file 
o pan-genome: multi-fasta file 

•  Multi  k-mer 
construct several compressed de Bruijn graphs 
without rebuilding suffix tree  
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Pan-genome analysis 
 B. Anthracis and E. coli 
Examine graph properties: 
•  Number nodes, edges, avg. degree 
•  Node length distribution 
•  Genome sharing among nodes 
•  Distribution of node distances to  

 core genome 
Other properties that can be studied: 
•  Girth, Diameter, Modularity, Network Motifs, etc. 
•  Functional enrichment of highly conserved or 

genome specific genes. 



Pan-genome analysis 



Pan-genome analysis 
Graphs of main chromosomes 
•  9 strains of Bacillus anthracis 
•  Selection of 9 strains of Escherichia coli 

 
Species K Nodes Edges Avg. Degree 

B. anthracis 25 103926 138468 1.33 
B. anthracis 100 41343 54954 1.32 
B. anthracis 1000 6627 8659 1.30 

E. coli 25 494783 662081 1.33 
E. coli 100 230996 308256 1.33 
E. coli 1000 11900 15695 1.31 



Pan-genome analysis 
 B. Anthracis and E. coli 
Examine graph properties 
•  Node length distribution 
•  Genome sharing among nodes 
•  Distribution of node distances 

to core genome 



 
 
 
 
 
 
 
 
 
 

   Histogram of Node Lengths 

 
 

Pan-genome analysis 



 
 
 
 
 
 
 
 
 
 

   Histogram of Node Lengths 

 
 

Pan-genome analysis 

Spike at 2k: 
SNPs 



Pan-genome analysis 
 B. Anthracis and E. coli 
Examine graph properties 
•  Node length distribution 
•  Genome sharing among nodes 
•  Distribution of node distances 

to core genome 



Fraction of nodes with each level of genome sharing 

B. anthracis 

E. coli 

Pan-genome analysis 



Pan-genome analysis 
 B. Anthracis and E. coli 
Examine graph properties 
•  Node length distribution 
•  Genome sharing among nodes 
•  Distribution of node distances 

to core genome 



Pan-genome analysis 
Graph encodes sequence context of segments. 
Core genome: subsequences that occur in at 
least 70% of underlying genomes. 

Nodes can be further 
in terms of hops while 
closer by base pairs. 

Branch and 
Bound Search 
 



Pan-genome analysis 
 
 
 
 
 
 
 
 
 
 

    Node distances to core genome 

 
 

Searched 1000-
hop radius 



Summary 
•  Identify pan-genome relationships graphically. 
•  Topological relationship between suffix tree and 

compressed de Bruijn graph. 
•  Direct construction of compressed de Bruijn 

graph for single or pan-genome. 
•  Introduce suffix skips. 
•  Explore pan-genome graphs of B. anthracis, E. coli. 

SplitMEM: Graphical pan-genome analysis with suffix skips. 
Marcus, S, Lee, H, Schatz, MC (2014) BioRxiv  
http://biorxiv.org/content/early/2014/04/06/003954 



Future work 
Improve splitMEM software: 
•  Reduce space using compressed full-text index instead 

of suffix tree 
•  Approximate indexing of strains to form a pan-genome 

graph 
•  Alignment of reads to pan-genome 

Biological applications: 
•  Functional enrichment of core-genome and genome 

specific segments 
•  Expand study to larger collection of microbes and 

larger genomes 
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Pan-genome analysis 
Branch and bound search (like Dijkstra’s shortest path 
algorithm) to compute bp distance from each non-core 
node to core genome:  
Traverse all distinct paths from source until  

o a core node is reached 
o current node was visited  

 by a shorter path 
 

Bounded search 
once a core node is found, its distance bounds 
maximum search distance along other paths 
 
 

OR 

 
 


