splitMEM:
graphical pan-genome analysis
with suffix skips

Shoshana Marcus
May 7,2014




Outline

Overview
Data Structures

splitMEM Algorithm

Pan-genome Analysis



Objective

Input

O 0O ® >

Several complete genomes
Available today for many
microbial species, near future
for higher eukaryotes
Pan-genome: analyze multiple
genomes of species together

Output

Compressed de Bruijn graph
* Graphical representation

depicts how population
variants relate to each other,
especially where they diverge
at branch points

How well conserved is a
sequence!

* What are network properties!?



de Bruijn graph
* Node for each distinct kmer

* Directed edge connects consecutive kmers

* Nodes overlap by k-1 bp

* Self-loops, multi-edges .4 TIA

ATAAGTTA

B N GAA GIF
AGAAGTCC :> AL - AGY
e
L y AlA

Reconstruct original sequence:

Eulerian path through graph, visit each edge once



Compressed de Bruijn graph

* Merge non-branching chains of nodes

* Min. number of nodes that preserve path labels

AAGT
ATAA GICC

<Usually built from uncompressed graph
<>We build directly in O(n log n) time and space



Compresssed de Bruijn graph

9 strains of Bacillus anthracis k=25



Compresssed de Bruijn graph

9 strains of Bacillus anthracis k=1000



Outline

Overview
Data Structures

splitMEM Algorithm

Pan-genome Analysis



Suffix Tree

. I Y \
Rooted, directed : A 1Y . ¥
tree with leaf for ] - .
each suffix. :
Each internal node,
except the root,
has at least two . &
children.

Each edge is labeled with nonempty substring.
No two siblings begin with the same character.
Path from root to leaf i spells suffix S[i ...n].

Append special character $ to guarantee each suffix
ends at leaf.



Constructing Suffix Tree

3 \
23 \
£ i

4

Naive Algorithm S = banana$
&
&
&
W
suf,
banana$

suf,



Constructing Suffix Tree

\
! \

Naive Algorithm S = banana$

suf,
ananas




Constructing Suffix Tree

S = banana$

suf,
nanas



Constructing Suffix Tree

Naive Algorithm S = banana$

suf,
anas




Constructing Suffix Tree

S = banana$

suf,
anas



Constructing Suffix Tree

Naive Algorithm S = banana$

banana$s suf,

ananas suf,
nanas suf,
suf, anas suf,
. suf s naS SUfS
suf,  suf, ’ asS SUfG
S suf,




Constructing Suffix Tree

O(n) time

Suffix Links

On-line Constructin of Suffix Trees, E. Ukkonen
Algorithmica (1995)



Suffix Tree Query

S = banana$

[ Search for ban }




Suffix Tree Query

S = banana$

[ Search for ban }




Suffix Tree Query

S = banana$

[ Search for ban }




Suffix Tree Query

S = banana$

[ Search for ban }

Found 1
occurrence



Suffix Tree Query

S = banana$

[Search for band}

Not found



Suffix Tree Query

S = banana$

[ Search for an }

Found 2
occurrences



Suffix Tree

<>Many applications in computational biology

<>Linear time construction algorithms

Linear time solutions to
* Genome alignment
* Finding longest common substring
* All-pairs suffix-prefix matching
* Locating all maximal repetitions

* And many more...



MEMs

Maximal Exact Match (MEM)

Exact match within sequence that cannot be
extended left or right without introducing
mismatch.

I I

TGCACGCAA

We are interested
in MEMs length = k




MEMs
Maximal Exact Match (MEM)

Exact match within sequence that cannot be
extended left or right without introducing
mismatch.

MEMs are internal nodes in the suffix tree that
have left-diverse descendants.

(have descendant leaves that represent suffixes
with different characters preceding them)

<Linear-time suffix tree traversal to locate MEMs.



MEMs in Suffix Tree

Possible MEMs: a, ana, na

S = banana$
banana$ suf,

ananas suf,
nanas suf,
suf, anas suf,
. suf s naS SUfS
suf,  suf, ’ asS SUf6
S suf,

MEMs are internal nodes in suffix
tree with left-diverse descendants



MEMs in Suffix Tree
MEMs: a, ana

S = banana$
banana$ suf,

nanas suf,

suf.

. suf
suf,  suf, ’

MEMs are internal nodes in suffix
tree with left-diverse descendants



MEMs in Suffix Tree
MEMs: a, ana

S = banana$

ananas suf,
anas suf.

MEMs are internal nodes in suffix
tree with left-diverse descendants



Outline

Overview
Data Structures

splitMEM Algorithm

Pan-genome Analysis



Compresssed de Bruijn graph

> N ;
CATAA GICC

Input:
AGAAGTCCSATAAGTTA

a

(&

L)
.

N

Types of nodes:

repeatNodes

uniqueNodes

/




splitMEM

Nodes in compressed de Bruijn graph classified as
i. repeatNodes

ii. uniqueNodes

Algorithm:
| Construct set of repeatNodes
2 Sort start positions of repeatNodes

3 Create edges and uniqueNodes to link non-
contiguous repeatNodes



repeatNodes

| Construct set of repeatNodes
|. Build suffix tree of genome
2. Mark internal nodes that are MEMs, length = k

3. Preprocess suffix tree for LMA queries

« )

4. Compute repeatNodes in compressed de Bruijn
graph by decomposing MEMs and extracting
overlapping components, length = k

- /




1 MEM occurs twice

I—

I—

TGCAC..GGCAA <;3

GCA

W/




Overlapping MEMs




Tandem Repeat

AGGCTTGGCTTGGCTTGGCTA
AGGCTTIGGCTTGGCTTGGCTA

AGGCTTGGCTTGGCTTGGCTA
AGGCTTIGGCTTGGCTTGGCTA
AGGCTTGGCTTIGGCTTGGCTA




repeatNodes

| Construct set of repeatNodes
|. Build suffix tree of genome
2. Mark internal nodes that are MEMs, length = k

3. Preprocess suffix tree for LMA queries

« )

4. Compute repeatNodes in compressed de Bruijn
graph by decomposing MEMs and extracting
overlapping components, length = k

- /




Split MEM to repeatNodes

 x KRG - y Xy - ulaly -

(o8 i: il
% L

Xyz‘q &
< K »/
/// o
- ﬁ
,,,, ”/ 5 -

\‘—_—.“’




Split MEM to repeatNodes

oGy -

- Xyzoaf
v

Find MEM in suffix tree.



Split MEM to repeatNodes

oGy -

Xyzof

Traverse suffix link.
Look for MEM as ancestor.



Split MEM to repeatNodes

Xyzof

Traverse suffix link.
Look for MEM as ancestor.



Split MEM to repeatNodes

oGy -

Xyzof

Traverse suffix link.
Look for MEM as ancestor.



Split MEM to repeatNodes

iy -

Found MEM as ancestor. Decompose.
Remove embedded MEM (suffix links). Find next embedded MEM.



Suffix Skips

<> Reduce O(n?) time to O(n log n) time

Suffix link: quickly navigate to distant part of tree

o Pointer from internal node labeled xS to node S

o Trim 1 character in O(1) time

o Trim c characters in O(c) time

Suffix skip:

o Trim c characters in O(log c) time



Suffix Skips

Genome: babab

Suffix skips 0 | Suffix skips 1 | Suffix skips 2

(dist = 1; suffix links) (dist=2) (dist=4)

Additional Preprocessing:

pointer jumping to rapidly add additional links




splitMEM

* splitMEM software
o C++

o open source http://splitmem.sourceforge.net

* Input modes:
o single genome: fasta file

o pan-genome: multi-fasta file

e Multi k-mer

construct several compressed de Bruijn graphs
without rebuilding suffix tree



Outline

Overview
Data Structures

splitMEM Algorithm

Pan-genome Analysis



Pan-genome analysis

B.Anthracis and E. coli
Examine graph properties:
* Number nodes, edges, avg. degree
* Node length distribution o
* Genome sharing among nodes
* Distribution of node distances to
core genome
Other properties that can be studied:
* Girth, Diameter, Modularity, Network Motifs, etc.

* Functional enrichment of highly conserved or
genome specific genes.



Pan-genome analysis

- S e
W b MO 1T GORAN DN

B avhencn AWK b0 1N
b evhrn o ANS bdow

L N Rl
B e CRC oM sl Ay
A eheon s O gula e

B ovhen v TPt gubdt e
B evhrn v o Sevw w B

oo 000 gubiind?
Lt i sl
§ ol 1900 o MY
Lol AU AN gy
ool AV O ™ 8
Lot APSE 008 it
() SR S
oot ML DD D

umNs
WA
ALl ¢
HHka
LA
4T
HNRs
AR L

sl
ol A
bl
S A
WM
LRa ) b )
©eos ke
L)

Urray
(8, b
o=
CTOOn
AR
INVT -
Crumcy!
s
(e,
ARl
AR AL
RR AL L]
A




Pan-genome analysis

Graphs of main chromosomes
e 9 strains of Bacillus anthracis
e Selection of 9 strains of Escherichia coli

B. anthracis 25 103926 | 38468 .33
B. anthracis 100 41343 54954 .32
B.anthracis 1000 6627 8659 .30
E. coli 25 494783 662081 .33
E. coli 100 230996 308256 .33

E. coli 1000 | 1900 15695 |.31



Pan-genome analysis

B.Anthracis and E. coli

Examine graph properties

* Node length distribution

* Genome sharing among nodes

 Distribution of node distances
to core genome



Pan-genome analysis

Satt g™ e ager ‘v @ e A B Batn | anges Wanagrem ter | c ok Ry
et A R TR R b i L TR ]

- ‘e 9 @

Histogram of Node Lengths



Pan-genome analysis

Bwts | argn Beagren o &

e A R TR :a-_ X ’B __' a y 6
v ((. X .“

(1 | e -
- (l. y .|3

Spike at 2k:

Histogram of Node Lengths SNPs

.
TR



Pan-genome analysis

B.Anthracis and E. coli

Examine graph properties

* Node length distribution

* Genome sharing among nodes

 Distribution of node distances
to core genome



Pan-genome analysis

.« Xl W ke2s 1
s - 0 k100
Z = W k1000
g & .
§ S . B.anthracis
§ I
' 2 3 4 . 6 ? . 0
- | ® e2s
- = 0 kei100
g ~ | 0 1000
o | il .
5 o] E. coli
g ° . |
© 1 Lilnkl
< ’ l l -l\L -L  — —
o
' 2 3 4 . 6 ? . 0

Per Node Genome Sharng Lewel

Fraction of nodes with each level of genome sharing



Pan-genome analysis

B.Anthracis and E. coli

Examine graph properties

* Node length distribution

* Genome sharing among nodes

 Distribution of node distances
to core genome



Pan-genome analysis

Graph encodes sequence context of segments.

Core genome: subsequences that occur in at
least 70% of underlying genomes.

Q ) Branch and

: Bound Search

Nodes can be further
\_/'l | in terms of hops while

closer by base pairs.

o /




Pan-genome analysis

Teman e ta Cove (@wama 'or b amvvm s B v e

' o B Pl Homn o v we areme ‘e b 10l be - cete. ™

o . . LA e e

| o - .o *r - 0~ *- -

N e g W -

Searched 1000-
Node distances to core genome hop radius



Summary

* Identify pan-genome relationships graphically.

* Topological relationship between suffix tree and
compressed de Bruijn graph.

* Direct construction of compressed de Bruijn
graph for single or pan-genome.

* Introduce suffix skips.

* Explore pan-genome graphs of B. anthracis, E. coli.

SplitMEM: Graphical pan-genome analysis with suffix skips.
Marcus, S, Lee, H, Schatz, MC (2014) BioRxiv
http://biorxiv.org/content/early/2014/04/06/003954



Future work

Improve splitMEM software:

* Reduce space using compressed full-text index instead
of suffix tree

* Approximate indexing of strains to form a pan-genome
graph
* Alignment of reads to pan-genome

Biological applications:

* Functional enrichment of core-genome and genome
specific segments

* Expand study to larger collection of microbes and
larger genomes



Acknowledgments

Michael Schatz IT department
Hayan Lee Todd Heywood

Giuseppe Narzisi

iPlant Collaborative
Schatz Lab Q)




Thank You!



Pan-genome analysis

Branch and bound search (like Dijkstra’s shortest path
algorithm) to compute bp distance from each non-core

node to core genome:
Traverse all distinct paths from source until

o a core node is reached e @
o current node was visited P L “
by a shorter path v ¥
" O .

Bounded search

once a core node is found, its distance bounds
maximum search distance along other paths



