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Unsolved Questions in

What is your genome sequence!
How does your genome compare to my genome!

Where are the genes and how active are they!?
How does gene activity change during development?
How does splicing change during development!?

How does methylation change during development?
How does chromatin change during development?
How does is your genome folded in the cell?
Where do proteins bind and regulate genes!?

What virus and microbes are living inside you!?
How do your mutations relate to disease!?

What drugs should we give you!?

Plus hundreds and hundreds more




Quantitative Biology Technologies
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Results
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classification, modeling,
visualization & data Integration

Scalable Algorithms
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Cost per Genome
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Sequencing Centers

Vo 2

s Worldwide capacity exceeds 15 Pbp/year
25 Pbpl/year as of Jan 15

Next Generation Genomics: World Map of High-throughput Sequencers
http://omicsmaps.com



How much is a petabyte?

Unit__ _ Size
Byte I

Kilobyte 1,000
Megabyte 1,000,000
Gigabyte 1,000,000,000
Terabyte 1,000,000,000,000
Petabyte 1,000,000,000,000,000

*Technically a kilobyte is 210 and a petabyte is 2°°



How much is a petabyte?

100 GB / Genome
4.7GB / DVD
~20 DVDs / Genome

X

10,000 Genomes

1PB Data
200,000 DVDs
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DNA Data Tsunami

Current world-wide sequencing capacity is growing at ~3x per year!

1400 ~1 exabyte
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DNA Data Tsunami

Current world-wide sequencing capacity is growing at ~3x per year!
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800 ~1 zettabyte
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How much is a zettabyte!

Unit | Size
Byte I
Kilobyte 1,000
Megabyte 1,000,000
Gigabyte 1,000,000,000
Terabyte 1,000,000,000,000
Petabyte 1,000,000,000,000,000
Exabyte 1,000,000,000,000,000,000

Zettabyte 1,000,000,000,000,000,000,000



How much is a zettabyte!

1ZB Data 150,000 miles of DVDs Both currently ~100Pb
200,000,000,000 DVDs ~ Y2 distance to moon But growing exponentially

([T Tube

100 GB / Genome
4.7GB / DVD
~20 DVDs / Genome

X

10,000,000,000 Genomes




Sequencing Centers

Next Generation Genomics: World Map of High-throughput Sequencers
http://omicsmaps.com




Sequencing Centers
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Biological Sensor Network

(@ewanbirney) (@latimes)

The rise of a digital immune system
Schatz, MC, Phillippy,AM (2012) GigaScience |:4



Data Production & CoIIectio

Expect massive growth to sequencing and other

biological sensor data over the next 10 years

* Exascale biology is certain, zettascale on the horizon

* Compression helps, but need to aggressively throw out data

* Requires careful consideration of the “preciousness” of the
sample

Major data producers concentrated in hospitals,

universities, agricultural companies, research

institutes

*  Major efforts in human health and disease, agriculture,
bioenergy

But also widely distributed mobile sensors
* Schools, offices, sports arenas, transportations centers, farms &

food distribution centers
* Monitoring and surveillance, as ubiquitous as weather stations

* The rise of a digital immune system?
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Sequencing Centers
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Informatics Centers

PERERRR N

The DNA Data Deluge
Schatz, MC and Langmead, B (2013) IEEE Spectrum. July, 2013



Informatics Centers
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The DNA Data Deluge
Schatz, MC and Langmead, B (2013) IEEE Spectrum. July, 2013



Parallel Algorithm Spectrum

Embarrassingly Parallel

Cluster Computing
Each item is Independent

Loosely Coupled

MapReduce

Independent-Sync-Independent

Tightly Coupled

Graphs & MD simulations

Constant Sync




MUMmerGPU

http://mummergpu.sourceforge.net

* Index reference using a suffix tree
* Each suffix represented by path from root
* Reorder tree along space filling curve Q/D

* Map many reads simultaneously on GPU
* Find matches by walking the tree

* Find coordinates with depth first search

* Performance on nVidia GTX 8800

* Match kernel was ~10x faster than CPU « Cores are only part
e Search kernel was ~4x faster than CPU of the solution.
e End-to-end runtime ~4x faster than CPU * Need storage, fast 1O

* Locality is king

High-throughput sequence alignment using Graphics Processing Units.
Schatz, MC, Trapnell, C, Delcher, AL, Varshney, A. (2007) BMC Bioinformatics 8:474.



Crossbow

http://bowtie-bio.sourceforge.net/crossbow

* Align billions of reads and find SNPs

— Reuse software components: Hadoop Streaming — —

— Mapping with Bowtie, SNP calling with SOAPsnp l l

* 4 hour end-to-end runtime including upload Subg” g’

— Costs $85;Todays costs <$30 m m m m

1511
* Very compelling example of cloud :
computing in genomics U
* Transfer takes time, but totally i i
depends on institution Y
* Need more applications! = SR SN

Searching for SNPs with Cloud Computing.
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. 10:R 134



Pan-Genome Alignment & Assembly

A | - I
B
C | | I
D | I [
Time to start considering problems Pan-genome colored de Bruijn graph
for which N complete genomes is the * Encodes all the sequence
input to study the “pan-genome” relationships between the genomes
* Available today for many microbial * How well conserved is a given
species, near future for higher sequence!?
eukaryotes *  What are the pan-genome
network properties?

Rapid pan genome analysis with augmented suffix trees
Marcus, S, Schatz, MC (2014) In preparation



Compute & Algorithmic Challenges

Expect to see many dozens of major informatics
centers that consolidate regional / topical information
* Clouds for Cancer, Autism, Heart Disease, etc

* Plus many smaller warehouses down to individuals

* Move the code to the data

Parallel hardware and algorithms are required

* Expect to see >1000 cores in a single computer

 Compute & IO needs to be considered together

* Rewriting efficient parallel software is complex and
expensive

Applications will shift from individuals to populations
* Read mapping & assembly fade out

* Population analysis and time series analysis fade in

* Need for network analysis, probabilistic techniques
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Exome sequencing of the SSC

T Last year saw 3 reports of >593 families from
90 . . .
il the Simons Simplex Collection
80 R i . . .
0 P < * Parents plus one child with autism and one
g R . wﬁ non-autistic sibling
f"' ,,'/ M b o . T o
£ 50/ gﬁ? * All attempted to find “gene killing mutations”
40[' L"ié{g%’a% specific to the autistic children to find genes
30 é}"’ §° associated with the disease
208 — Joint coverage at 20X * lossifov (343) and O’Roak (50) used GATK,
& Individual coverage at 20X . . . .
4 © Joint coverage at 40X (CS) Sanders (200) didn’t attempt to identify indels
0 + Joint coverage at 40X (WU)
1 343

Family Rank

De novo gene disruptions in children on the autism spectrum
lossifov et al. (2012) Neuron. 74:2 285-299

De novo mutations revealed by whole-exome sequencing are strongly associated with autism
Sanders et al. (2012) Nature. 485,237-241.

Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations
O’Roak et al. (2012) Nature. 485, 246-250.



Scalpel: Haplotype Microassembly

DNA sequence micro-assembly pipeline for accurate
detection and validation of de novo mutations (SNPs,
indels) within exome-capture data.

Features =
£,
I. Combine mapping and assembly ;/
2. Exhaustive search of haplotypes [7
P

N

3. De novo mutations

NRXN1 de novo SNP
(auSSC12501 chr2:50724605)

Accurate detection of de novo and transmitted INDELs within exome-capture data using micro-assembly
Narzisi, G, O’Rawe, J, lossifov, |, Lee,Y,Wang, Z,Wu,Y, Lyon, G,Wigler, M, Schatz, MC (2014) Under review.



Scalpel Pipeline

Extract reads mapping within the exon A== 2\
including (1) well-mapped reads, (2) soft- N S\ <>
AL — ==

clipped reads, and (3) anchored pairs

&

Decompose reads into overlapping
k-mers and construct de Bruijn graph
from the reads

<

Find end-to-end haplotype paths
spanning the region

A
. 7\ A4
Align assembled sequences to VA v

reference to detect mutations

deletion insertion




Experimental Analysis & Validation

Selected one deep coverage exome HapCaller _oamBiRRae. SOAPindel
for deep analysis
* Individual was diagnosed with

ADHD 4
*  80% of the target at >20x coverage (ﬁ)s,ai)
* Evaluated with Scalpel, SOAPindel,

and GATK Haplotype Caller \
1000 indels selected for validation . R .
* 200 Scalpel A el Gl
* 200 GATK Haplotype Caller o)
* 200 SOAPindel Sy
* 200 within the intersection N 4
+ 200 long indels (>30bp) gl



Experimental Analysis & Validation

Selected one deep coverage exome HapCaller _oatifiiiiBBia. SOAPindel
for deep analysis
* Individual was diagnosed with

ADHD (See Gholson for details) 4
*  80% of the target at >20x coverage
* Evaluated with Scalpel, SOAPindel,

and GATK Haplotype Caller \

‘

\

1000 indels selected for validation

+ 200 Scalpel Biccacdi ;
* 200 GATK Haplotype Caller q v
+ 200 SOAPindel . |mrwpev]
200 within the intersection g >

* 200 long indels (>30bp) e narsatil

Scalpel



Freguoncy

10000

1000
4

100

10

Revised Analysis of the SSC

frame-shift
inlgrgenic ——
ntron - .

no-frame-shift

sphco-she
UTR —

-100

-80 -60 -40 -20 0 20 40 60 80
INDEL size

Constructed database of >|M transmitted and de novo indels
Many new gene candidates identified, population analysis underway

100



De novo mutation discovery and validation

Concept: Identify mutations not present
in parents. @

Challenge: Sequencing errors in the child

or low coverage in parents P S

lead to false positive de novos

Reference: .. TCAAATCCTTTTAATAAAGAAGAGCTGACA. ..

Father: .. . TCAAATCCTTTTAATAAAGAAGAGCTGACA. ..
Mother: .. . TCAAATCCTTTTAATAAAGAAGAGCTGACA. ..
Sibling: .+ .TCAAATCCTTTTAATAAAGAAGAGCTGACA. ..
Proband(1l): ...TCAAATCCTTTTAATAAAGAAGAGCTGACA...
Proband(2): ...TCAAATCCTTTTAAT****AAGAGCTGACA...

4bp heterozygous deletion at chr15:93524061 CHD?2



De novo Genetics of Autism

* In 593 family quads so far, we see significant enrichment in de novo
likely gene killers in the autistic kids

— Opverall rate basically I:1

— 2:1 enrichment in nonsense mutations
— 2:1 enrichment in frameshift indels

— 4:| enrichment in splice-site mutations

— Most de novo originate in the paternal line in an age-dependent
manner (56:18 of the mutations that we could determine)

* Observe strong overlap with the 842 genes known to be
associated with fragile X protein FMPR

— Related to neuron development and synaptic plasticity

— Also strong overlap with chromatin remodelers

Accurate detection of de novo and transmitted INDELs within exome-capture data using micro-assembly
Narzisi, G, O’Rawe, |, lossifov, |, Lee,Y,Wang, Z,WU,Y, Lyon, G,Wigler, M, Schatz, MC (2014) Under review.



The potential for big data!?

namre

Vol 457)19 Febreuary 2009 doi10.7038/ nature07634

LETTERS

Detecting i
query data

Jeremy Ginsberg', Mat|

Seasonal influenza epi
causing tens of millions
500,000 deaths worldwide
enza, & new strain of infl
immunity exists and that
mission could result in a
Early detection of disease
response, can reduce the |
influenza™'. One way to
health-secking behaviour
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Figure 2 | A comparison of model estimates for the mid-Atlantic region
(black) against COC-reported ILI percentages (red), including poimts over
which the model was fit and validated. A correlation of 0.85 was obtained
over 128 points from this region 10 which the model was fit, whereas &
correlation of 0.96 was obtained over 42 validation points. Dotted lines
indicate 95% prediction intervals, The region comprises New York, New

Jersey and Pennsylvania
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engines, which are submitted by millions of users around the

ity that 2 random physician visit in a particular region is related to an

world cach day. Here we present a method of analysing large  [L; this is equivalent to the percentage of 111 related physician visits,
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The fallacy

of big data?

The Parable of Google Flu: (e Samvi ot

Traps in Big Data Analysis o Taecwmeiise
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The risks of big data!?

Alessandro Acquistl' and Ralph Gross
Camegie Mellon Univeruty, Pitnibergh, PA 15213

Predicting Social Security numbers from public data

Communicated by Stephen E Fuonberg, Carnegie Mellon University, Mtssburgh, PA May S 2009 freceived for review Jaruery 14 2009)

Information about an Individual's place and date of birth can be
exploited to predict his or her Social Security number (SSN). Using
oaly publicly available information, we observed a correlation
between indviduals’ SSNs and their birth data and found that for
younger cohorts the correlation aliows statistical inference of
private $SNs, The inferences are made possible by the public
avalability of the Sockal Security Administration’s Death Master

3
i
:

-

number (SN). The SSA openly provides information about the
process through which ANs, GNs, and SNs are issued (1), ANs
are currently assigned based on the zipcode of the mailing
address provided in the SSN application form [RMO00201.030]
(1). Low-population states and cortain US. possessions are
allocased T AN cach, whereas other states are allocated sets of

File and the widespread accassibility of

mudtiple sources, such as data brokers or
working sites. Our results highlight the
sequences of the complex interactions

sources in modern information economies
risks associated with information revelation

ety thett | onfine sockal networks | privacy | ssati

'nmodanmblmm' jon econamics, sensitive
plan sight amid transactions that rely on thei
their wmhinderod croslation. Such is the case
numbers in the United States: Creatod as

tracking individual ings (1), they have 1
authentication devices (2), ing onc of
o meost ofien t by thueves.

Adminstration (SSA ), which issocs them, has

publish on social networking sites (10). Using this method, we
wlentified with a single attempt the first S digits for 44% of DMF
records of deccased individuals born in the US. from 1989 10
2003 and the complete SSNs with <1000 attempts (making
SSNs akin 1o 3-digit financial PINs) for 855 of those records.
Extrapolating to the U.S. hiving population, this would imply the
potential identification of millions of SSNs for individuals whose
birth data were available, Such findings highlight the hidden
privacy costs of widespread information dissemination and the
complex interactions data sources in modern
information cco.odan(ol%, the role of public

records as breeder documents (12) of more sensitive data.




Learning and Translation

Tremendous power from data aggregation

* Observe the dynamics of biological systems

* Breakthroughs in medicine and biology of profound
significance

Be mindful of the risks

* The potential for over-fitting grows with the complexity of
the data, statistical significance is a statement about the
sample size

* Reproducible workflows, APls are a must

* Caution is prudent for personal data

The foundations of biology will continue to be

observation, experimentation, and interpretation

* Technology will continue to push the frontier

* Feedback loop from the results of one project into
experimental design for the next




Who is a Data Scientist?

http://en.wikipedia.org/wiki/Data_science
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Biological Data Sciences
Cold Spring Harbor Laboratory, Nov 5 - 8,2014
Michael Schatz, Anne Carpenter, Matt Wood

Thank you

http://schatzlab.cshl.edu
@mike_schatz / #KSBigData




