

DOE Systems Biology Knowledgebase

Variation & RNA-seq Services

Michael Schatz
Cold Spring Harbor Laboratory

INTEGRATION
AND MODELING
for PREDICTIVE
BIOLOGY

Agenda

1. Getting Started

2. Variation services

3. RNA-seq services



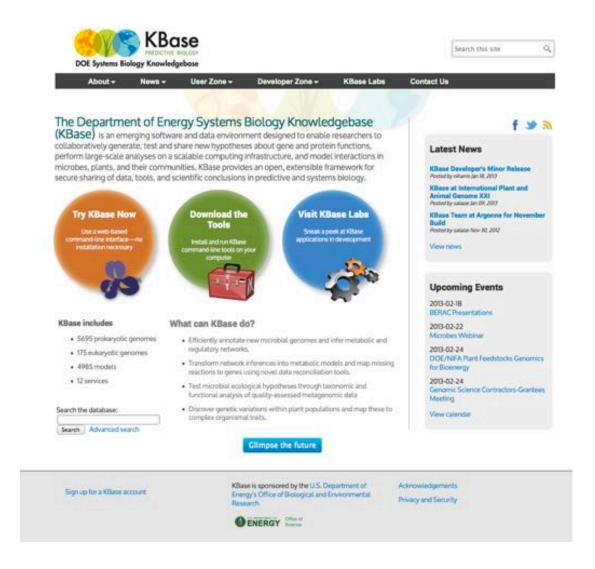
Agenda

1. Getting Started

2. Variation services

3. RNA-seq services

Samples to discoveries


Powered by KBase

Logging In

- IRIS: command-line access to KBase functionality inside web browser
- Download and install tools on Mac or Linux
- KBase Labs offer early access to web-based interfaces
- Narrative user interface

http://kbase.us/

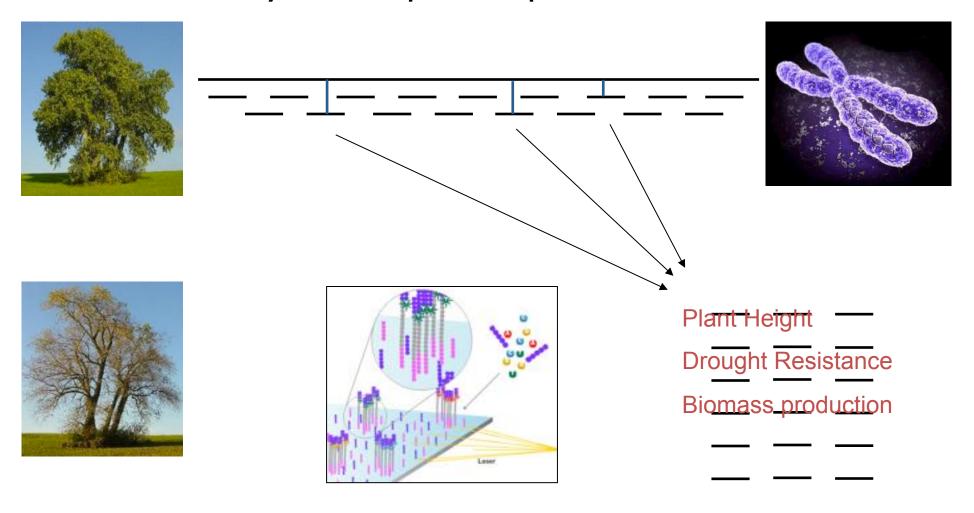
https://gologin.kbase.us/SignUp



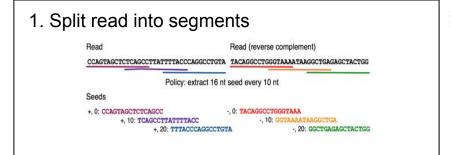
Agenda

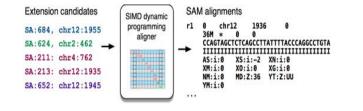
1. Getting Started

2. Variation services


3. RNA-seq services

Resequencing & Variations


How does your sample compare to the reference?


Algorithms for Mapping & Genotyping

2. Lookup each segment and prioritize

```
Seed alignments (as B ranges)
                                Ungapped
                               alignment with
 +, 0: CCAGTAGCTCTCAGCC
                                                 { [211, 212], [212, 214] }
                                 FM Index
+, 10: TCAGCCTTATTTTACC
                                                { [653, 654], [651, 653] }
+, 20: TTTACCCAGGCCTGTA
                                                { [684, 685] }
 -, 10: GGTAAAATAAGGCTGA
                                                 { [624, 625] }
-, 20: GGCTGAGAGCTACTGG
```

3. Evaluate end-to-end match

Homozygous variant Heterozygous variant? GTGCGCCC TAGGCTATA GCGCCCTA ...CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC...

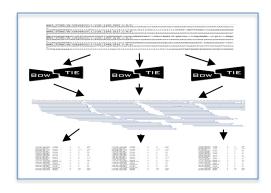
- Distinguishing SNPs from sequencing error typically a likelihood test of the coverage
 - Hardest to distinguish between errors and heterozygous SNP.
 - Coverage is the most important factor!
 - Target at least 10x, 30x more reliable

Fast gapped-read alignment with Bowtie 2

Langmead & Salzberg. (2012) Nature Methods. 9:357-359.

The Sequence Alignment/Map format and SAMtools Li H et al. (2009) Bioinformatics. 25:16 2078-9

Variation Services API 1.0


Genotyping API

Bowtie: Launch alignment task with Bowtie

■ **BWA**: Launch alignment task with BWA

SNPCalling: Launch SNPcalling task with SAMTools

SortAlignments: Launch task to sort by chromosome

Data API

• List: List files in a directory

• Fetch: Fetch files from HDFS

• Put: Put files into HDFS

RM: Delete files on HDFS

FetchBAM: On-the-fly conversion to BAM

• PutFastq: Put reads into HDFS with conversion

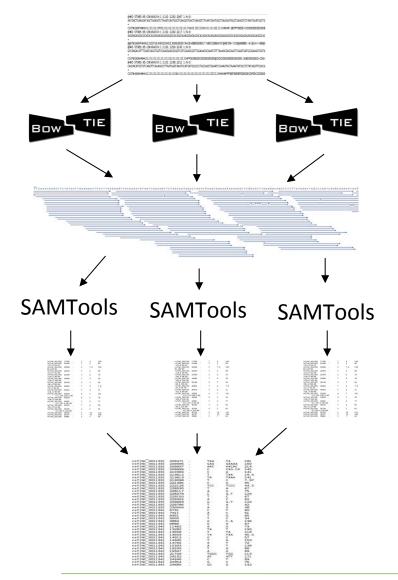
Job API

 ClusterStatus: return basic status of cluster (jobs running, nodes available, etc)

• JobStatus: Given a JobID, returns current status

ListJobs: List JobID running with a given username

• KillJob: Kills a given JobID


Notes:

All calls are authenticated with KBase username/password

Reads to SNPs in 5 easy steps

1.Identify reference genome

\$ all entities Genome -f scientific name | grep -i 'Populus'

2. Upload Reads to KBase cloud

\$ jk fs put pe populus.1.fq.gz populus.2.fq.gz populus

3. Align Reads with Bowtie 2

\$ jk compute bowtie -in=populus.pe \ -org=populus -out=populus align

4.Call SNPs with SAMTools

\$ jk compute samtools snp -in=populus align \ -org=populus -out=populus snps

5.Merge and Download VCF files

\$ jk compute vcf merge -in=populus snps \ --alignments=populus align -out=populus.vcf \$ jk fs get populus.vcf

Maize population analysis

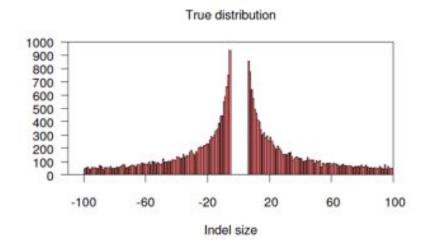
Align & call SNPs from 131 maize samples

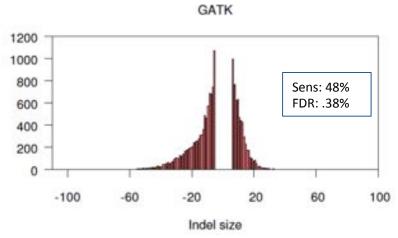
ITB fastq / 408Gbp input data

	Serial	KBase cloud (small)	KBase Cloud (large)
Config	1 core (1 node)	210 cores (15 nodes)	854 cores (61 nodes)
Bowtie2	1311 hr*	19.5 hr	5 hr
Sort	58 hr*	N/A	N/A
Samtools	58 hr*	3.5 hr	1.5 hr
End-to-End Speedup	1427 hr* 1x	23 hr 62x	6.5 hr 219x

*estimated time

Variation Services 2.0 Sneak peak


SNPs + Short Indels


High precision and sensitivity

"Long" Indels (>5bp)

Reduced precision and sensitivity

Analysis confounded by sequencing errors, localized repeats, allele biases, and mismapped reads

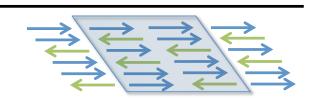
Scalpel: Haplotype microassembly

DNA sequence micro-assembly pipeline for accurate detection and validation of transmitted and de novo mutations

Features

- Combine mapping and assembly
- Exhaustive search of haplotypes
- De novo mutations

NRXN1 de novo SNP (auSSC12501 chr2:50724605)


Accurate detection of de novo and transmitted INDELs within exome-capture data using micro-assembly

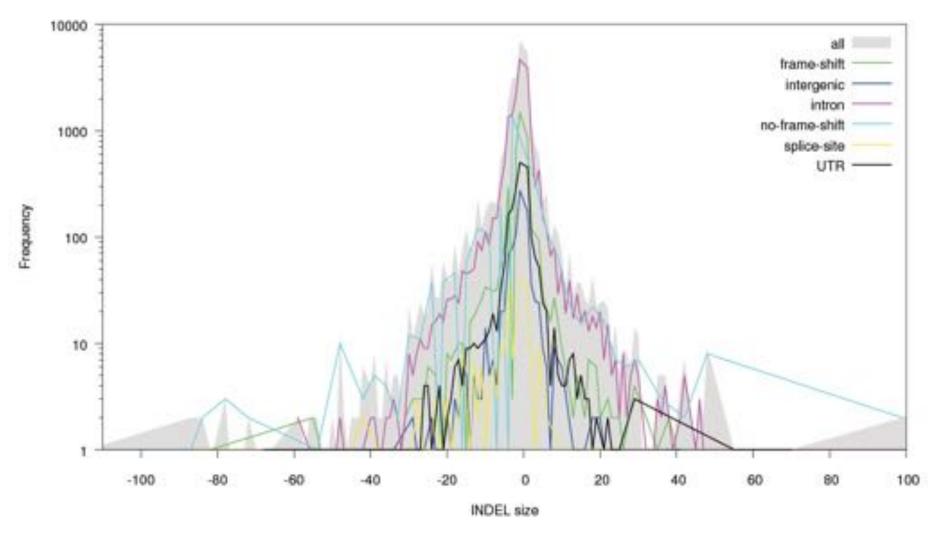
Narzisi, G et al (2014) bioRxiv doi: 10.1101/001370

Algorithm Overview

Extract reads mapping within the exon including (1) well-mapped reads, (2) soft-clipped reads, and (3) anchored pairs

Decompose reads into overlapping k-mers and construct de Bruijn graph from the reads

Find end-to-end haplotype paths spanning the region


Align assembled sequences to reference to detect mutations

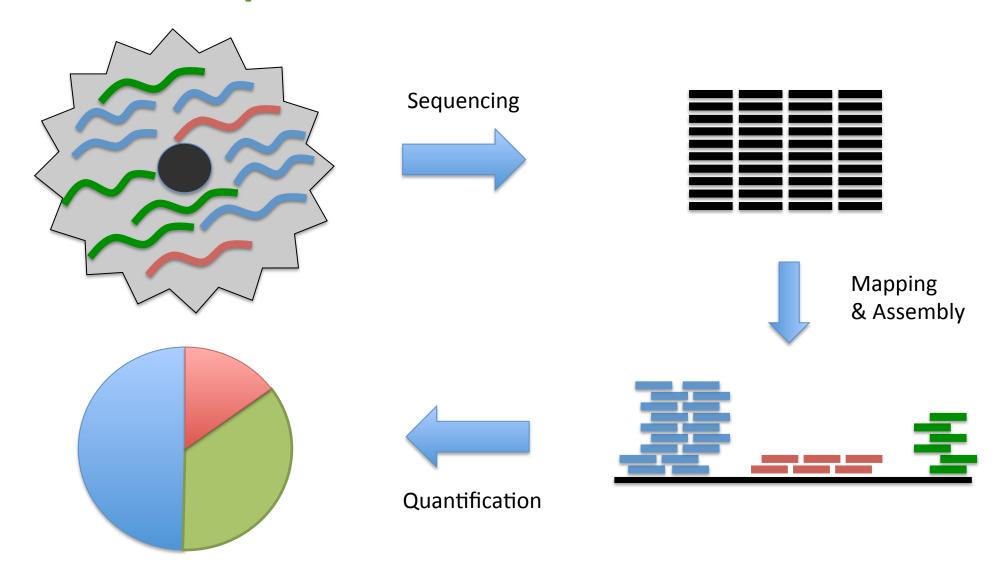
Population Analysis

See Ranjan's Talk at 5:40

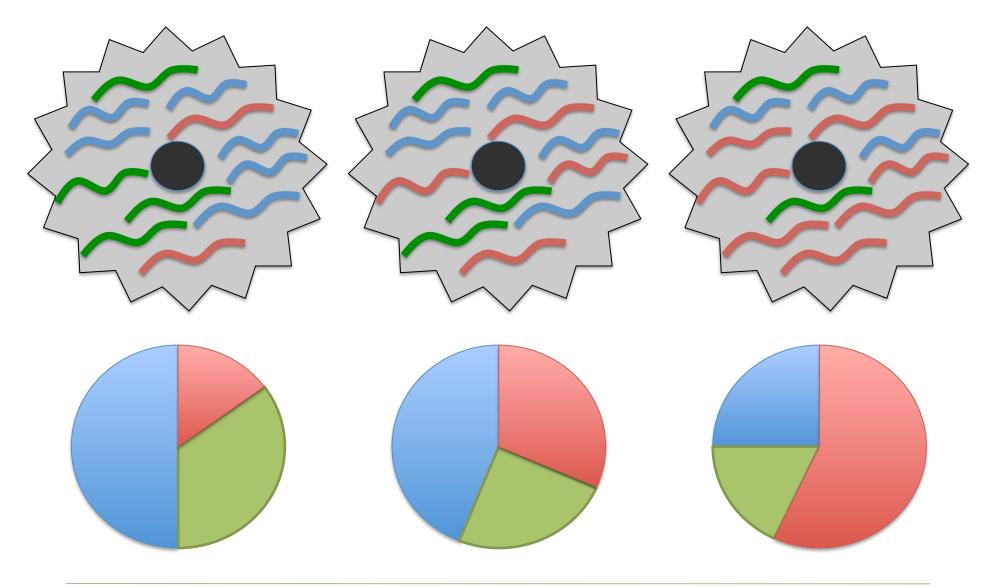


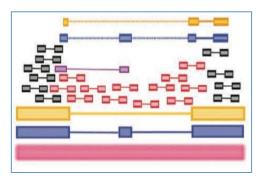
Agenda

1. Getting Started

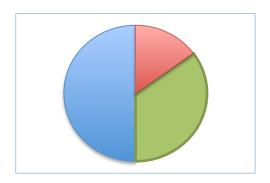

2. Variation services

3. RNA-seq services


RNA-seq Overview



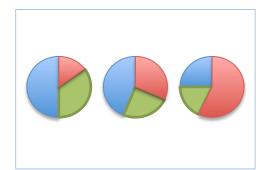
RNA-seq Overview


RNA-seq Challenges

Challenge 1: Eukaryotic genes are spliced

Solution: Use a spliced aligner, and assemble isoforms

TopHat: discovering spliced junctions with RNA-Seq. Trapnell et al (2009) *Bioinformatics*. 25:0 1105-1111

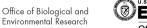


Challenge 2: Read Count != Transcript abundance

Solution: Infer underlying abundances (e.g. FPKM)

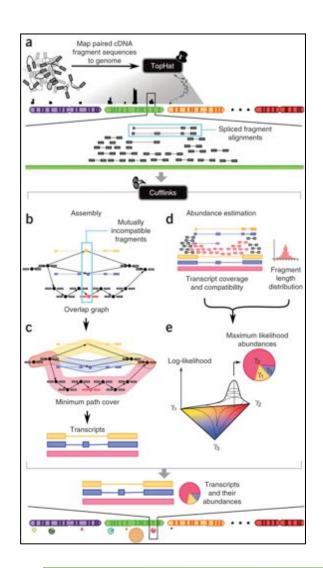
Transcript assembly and quantification by RNA-seq

Trapnell et al (2010) Nat. Biotech. 25(5): 511-515



Challenge 3: Transcript abundances are stochastic

Solution: Replicates, replicates, and more replicates


RNA-seg differential expression studies: more sequence or more replication?

Liu et al (2013) Bioinformatics. doi:10.1093/bioinformatics/btt688

Identifying Differentially Expressed Genes

1. Spliced alignment with TopHat

\$ jk-compute-tophat -in=t1.1.fq.gz,t1.2.fq.gz -ref=ecoli -out=t1-tophat -align opts=-p8

2. Assemble and quantify expression with Cufflinks

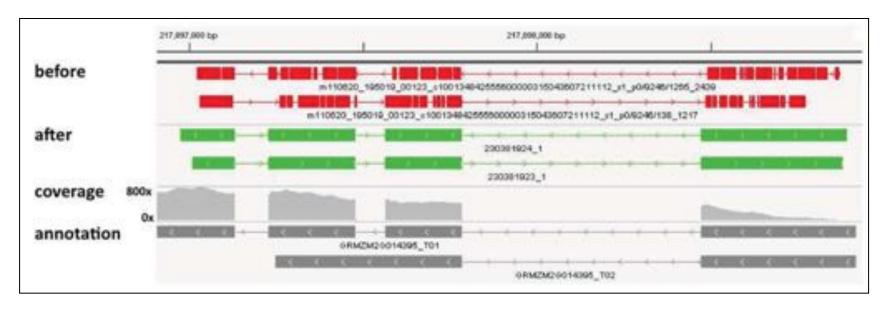
\$ jk-compute-cufflinks -in=t1-tophat/accepted_hits.bam -out=t1-cufflinks \ -assembly_opts=-p8

3. Merge samples

\$ jk-compute-cuffmerge -in=t1-cufflinks/transcripts.gtf,t2-cufflinks/transcripts.gtf \
-ref=ecoli -out=cuffmerge-out -assembly_opts=-p8

4a. Identify DE genes

\$ jk-compute-cuffdiff -in=t1-tophat/accepted_hits.bam,t2-tophat/accepted_hits.bam \
-out=cuffdiff-out -ref=ecoli -assembly_opts=-p8 -condn_labels=T1,T2 \
-merged_gtf=cuffmerge-out/merged.gtf


4b. Discover novel genes & isoforms

\$ jk-compute-cuffcompare -in=t1-cufflinks/transcripts.gtf,t2-cufflinks/transcripts.gtf \
-out=cuffcompare-out -ref_gtf=cuffmerge-out/merged.gtf

RNA-seq 2.0: Long Read Analysis

- Long-read single-molecule sequencing has potential to directly sequence full length transcripts
 - Error corrected reads almost perfectly match the genome, pinpointing splice sites, identifying alternative splicing

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) *Nature Biotechnology*. doi:10.1038/nbt.2280

Additional Resources

Resource	URL	
KBase	http://kbase.us/	
Getting Started	http://kbase.us/for-users/user-home/	
Variation Services	http://kbase.us/for-users/tutorials/analyzing-data/variation-service/	
RNA-seq Services	http://kbase.us/for-users/tutorials/analyzing-data/plant-genome- analysis/plant-expression-service/	
Bowtie2	http://bowtie-bio.sourceforge.net/bowtie2/index.shtml	
BWA	http://bio-bwa.sourceforge.net/	
SAMTools	http://samtools.sourceforge.net/	
Cufflinks	http://cufflinks.cbcb.umd.edu/	
KBase Contact	http://kbase.us/contact-us/	
Survey	https://www.surveymonkey.com/s/KB-user-info	

Thank you!

http://schatzlab.cshl.edu @mike_schatz / @DOEKBase

