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Milestones in DNA Sequencing 
1970 1980 1990 2000 2010 

1977 
 Sanger et al. 

1st Complete Organism 
Bacteriophage �X174 

5375 bp 

Radioactive Chain Termination  
5000bp / week / person 

 
http://en.wikipedia.org/wiki/File:Sequencing.jpg 

http://www.answers.com/topic/automated-sequencer 



Milestones in DNA Sequencing 
1970 1980 1990 2000 2010 

http://commons.wikimedia.org/wiki/File:370A_automated_DNA_sequencer.jpg 

Fluorescent Dye Termination 
350bp / lane x 16 lanes = 
 5600bp / day / machine 

  
http://www.answers.com/topic/automated-sequencer 

 

1987 
Applied Biosystems markets the ABI 370 as 

the first automated sequencing machine 



Milestones in DNA Sequencing 
1970 1980 1990 2000 2010 

1995  
Fleischmann et al. 

1st Free Living Organism 
TIGR Assembler. 1.8Mbp 

2000  
Myers et al. 

1st Large WGS Assembly. 
Celera Assembler. 116 Mbp 

2001 
 Venter et al.,  

Human Genome 
Celera Assembler. 2.9 Gbp 

ABI 3700: 500 bp reads x 768 samples / day = 384,000 bp / day. 
"The machine was so revolutionary that it could decode in a single day the same amount 
of genetic material that most DNA labs could produce in a year. " J. Craig Venter 



Milestones in DNA Sequencing 
1970 1980 1990 2000 2010 

2004 
454/Roche 

Pyrosequencing 
Current Specs (Titanium):  
1M 400bp reads / run =  

1Gbp / day 

2007 
Illumina 

Sequencing by Synthesis 
Current Specs (HiSeq 2000):  

2.5B 100bp reads / run =  
25Gbp / day 

2008 
ABI / Life Technologies 

SOLiD Sequencing 
Current Specs (5500xl):  
5B 75bp reads / run =  

30Gbp / day 



Second Generation Sequencing Applications 

De novo Assembly 

Alignment & Variations 
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Differential Analysis 

Phylogeny & Evolution 



The DNA Data Tsunami 

"Will Computers Crash Genomics?"  
Elizabeth Pennisi (2011) Science. 331(6018): 666-668.  

Current world-wide sequencing capacity exceeds 10Tbp/day (3.6Pbp/year) 
and is growing at 5x per year! 



•  MapReduce is Google's framework for large data computations  
–  Data and computations are spread over thousands of computers 

•  Indexing the Internet, PageRank, Machine Learning, etc…  (Dean and Ghemawat, 2004) 
•  946,460 TB processed in May 2010 (Jeff Dean at Stanford, 11.10.2010) 

–  Hadoop is the leading open source implementation 
•  Developed and used by Yahoo, Facebook, Twitter, Amazon, etc 
•  GATK is an alternative implementation specifically for NGS 

Hadoop MapReduce 

•  Benefits 
–  Scalable, Efficient, Reliable 
–  Easy to Program 
–  Runs on commodity computers 

•  Challenges 
–  Redesigning / Retooling applications 

–  Not Condor, Not MPI 
–  Everything in MapReduce 
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 System Architecture 

•  Hadoop Distributed File System (HDFS) 
–  Data files partitioned into large chunks (64MB),  replicated on multiple nodes 
–  Computation moves to the data, rack-aware scheduling 

•  Hadoop MapReduce system won the 2009 GreySort Challenge 
–  Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks 

 

Slave 5 

Slave 4 

Slave 3 

Slave 2 

Slave 1 

Master Desktop 



Amazon Web Services 

•  All you need is a credit card, and you can 
immediately start using one of the largest 
datacenters in the world 

•  Elastic Compute Cloud (EC2) 
–  On demand computing power 

•  Simple Storage Service (S3) 
–  Scalable data storage 

•  Plus many, many more 
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EC2 Architecture 
•  Very large cluster of machines 

–  Effectively infinite resources 
–  High-end servers with many cores 

and many GB RAM 

•  Machines run in a virtualized 
environment 
–  Amazon can subdivide large nodes 

into smaller instances 
–  You are 100% protected from other 

users on the machine 
–  You get to pick the operating 

system, all installed software 



Amazon S3 
•  S3 provides persistent storage for large 

volumes of data 
•  Very high speed connection from S3 to EC2 

compute nodes 
•  Public data sets include s3://1000genomes 

 
–  Tiered pricing by volume 

•  Pricing starts at 15¢ / GB / month 
•  5.5¢ / GB / month for over 5 PB 
•  Pay for transfer in and out of Amazon 

–  Import/Export service for large volumes 
•  FedEx your drives to Amazon 



Hadoop on AWS 

AWS 

EC2 - 5 

EC2 - 4 

EC2 - 3 

EC2 - 2 

EC2 - 1 

EC2 -  
Master 

Desktop 
S3 

•  If you don�t have 1000s of machines, rent them from Amazon 
•  After machines spool up, ssh to master as if it was a local machine. 
•  Use S3 for persistent data storage, with very fast interconnect to EC2. 



Programming Models 
Embarrassingly Parallel 

Map-only 
Each item is Independent 

Traditional Batch Computing 

Loosely Coupled 

MapReduce 
Independent-Shuffle-Independent 

Batch Computing + Data Exchange 

M M M M 

R R R R 

Tightly Coupled 

Iterative MapReduce 
Nodes interact with other nodes 

Big Data MPI 

MR 

MR 



1. Embarrassingly Parallel 
•  Batch computing 

–  Each item is independent 
–  Split input into many chunks 
–  Process each chunk separately on a 

different computer 

•  Challenges 
–  Distributing work, load balancing, 

monitoring & restart 

•  Technologies  
–  Condor, Sun Grid Engine 
–  Amazon Simple Queue 



2. Loosely Coupled 
•  Divide and conquer 

–  Independently process many items 
–  Group partial results  
–  Scan partial results into final answer 

•  Challenges 
–  Batch computing challenges  
–  + Shuffling of huge datasets 

•  Technologies 
–  Hadoop, Elastic MapReduce, Dryad 
–  Parallel Databases 



Short Read Mapping 

•  Given a reference and many subject reads, report one or more �good� end-to-
end alignments per alignable read 
–  Find where the read most likely originated 
–  Fundamental computation for many assays 

•  Genotyping    RNA-Seq    Methyl-Seq 
•  Structural Variations   Chip-Seq    Hi-C-Seq 

•  Desperate need for scalable solutions 
–  Single human requires >1,000 CPU hours / genome 

!CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC! 
GCGCCCTA 

GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC! 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 
AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATATG 
CTATATGCG 

!CC 
!CC 
!CCA 
!CCA 
!CCAT 

ATAC! 
C! 
C! 

!CCAT 
!CCATAG TATGCGCCC 

GGTATAC! 
CGGTATAC 

Identify variants 

Reference 

Subject 



Crossbow 

•  Align billions of reads and find SNPs 
–  Reuse software components: Hadoop Streaming 

!"#$%%4(/5+647()0(8,*+9(,-+)3+:%*,(004(/.

•  Map: Bowtie (Langmead et al., 2009) 
–  Find best alignment for each read 
–  Emit (chromosome region, alignment) 

•  Reduce: SOAPsnp (Li et al., 2009) 
–  Scan alignments for divergent columns 
–  Accounts for sequencing error, known SNPs 

•  Shuffle: Hadoop 
–  Group and sort alignments by region 

;
. ;
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Performance in Amazon EC2 

Asian Individual Genome 

Data Loading 3.3 B reads 106.5 GB $10.65 

Data Transfer 1h :15m 40 cores $3.40 

Setup 0h : 15m 320 cores $13.94 

Alignment 1h : 30m 320 cores $41.82 

Variant Calling 1h : 00m 320 cores $27.88 

End-to-end 4h : 00m $97.69 

Discovered 3.7M SNPs in one human genome for ~$100 in an afternoon. 
Accuracy validated at >99% 

Searching for SNPs with Cloud Computing. 
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. 10:R134! 
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Cloud Cluster 

Cloud 
Storage 
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Internet 

Cloud 
Storage 

Internet 
Uplink 

Map-Shuffle-Scan for Genomics 

Cloud Computing and the DNA Data Race. 
Schatz, MC, Langmead B, Salzberg SL (2010) Nature Biotechnology. 28:691-693 



MicroSeq: NextGen Microsatellite Profiling 

•  Class of simple sequence repeats 
–  …GCACACACACAT… = …G(CA)5T…  
–  Created and mutate primarily through 

slippage during replication  
–  Highly variable & ubiquitous 

•  Genotyping with MicroSeq 
–  Map reads using a new MS-mapper 
–  Collect MS-reads into MS-genotypes 
–  Analyze profiles in cells, across cells, & across 

populations 
•  Loss of heterozygosity 
•  Development of somatic & cancer cells 
•  Relations across strains, across species 
•  etc… (Salipante et al. 2006) 

Mitchell Bekritsky, WSBS 



3. Tightly Coupled 
•  Computation that cannot be partitioned 

–  Graph Analysis 
–  Molecular Dynamics 
–  Population simulations 

•  Challenges 
–  Loosely coupled challenges  
–  + Parallel algorithms design 

 
•  Technologies 

–  MPI 
–  MapReduce, Dryad, Pregel 



Short Read Assembly 

AAGA 
ACTT  
ACTC 
ACTG 
AGAG 
CCGA 
CGAC 
CTCC 
CTGG 
CTTT 
… 

de Bruijn Graph Potential Genomes 

AAGACTCCGACTGGGACTTT 

•  Genome assembly as finding an Eulerian tour of the de Bruijn graph 
–  Human genome: >3B nodes, >10B edges 

•  The new short read assemblers require tremendous computation 
–  Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM 
–  ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours 
–  SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM 

CTC CGA 

GGA CTG 

TCC CCG 

GGG TGG 

AAG AGA GAC ACT CTT TTT 

Reads 

AAGACTGGGACTCCGACTTT 



Graph Compression 
•  After construction, many edges are unambiguous 

–  Merge together compressible nodes 
–  Graph physically distributed over hundreds of computers 



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H ! T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Initial Graph: 42 nodes 

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
   

  
 
  

 
  

 
  



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H ! T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 1: 26 nodes (38% savings) 

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

 
  



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H ! T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 2: 15 nodes (64% savings) 

 
  

 
  

 
   
  

 
 

 
 



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H ! T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 2: 8 nodes (81% savings) 

  



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H ! T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 3: 6 nodes (86% savings) 



Fast Path Compression 
 Challenges 

–  Nodes stored on different computers 
–  Nodes can only access direct neighbors 

 
 

 
 

 Randomized List Ranking 
–  Randomly assign  H /  T  to each 

compressible node 
–  Compress  H ! T  links 

 Performance 
–  Compress all chains in log(S) rounds 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 4: 5 nodes (88% savings) 



 Generally an exponential number of compatible sequences 
–  Value computed by application of the BEST theorem (Hutchinson, 1975) 

 
 
          L = n x n matrix with ru-auu along the diagonal and -auv in entry uv 

   ru = d+(u)+1 if u=t, or d+(u) otherwise 
   auv = multiplicity of edge from u to v 

Counting Eulerian Tours 

ARBRCRD 
or 

ARCRBRD 
A R D 

B 

C 

Assembly Complexity of Prokaryotic Genomes using Short Reads. 
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.  



Contrail 

De novo bacterial assembly 
•  Genome: E. coli K12 MG1655, 4.6Mbp 
•  Input: 20.8M 36bp reads, 200bp insert (~150x coverage) 
•  Preprocessor: Quake Error Correction 

http://contrail-bio.sourceforge.net 

Assembly of Large Genomes with Cloud Computing. 
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation. 

Cloud Surfing Error Correction Compressed Initial 

N 
Max 
N50 

5.1 M 
27 bp 
27 bp 

245,131 
1,079 bp 

156 bp 

2,769 
70,725 bp 
15,023 bp 

1,909 
90,088 bp 
20,062 bp 

300 
149,006 bp 
54,807 bp 

Resolve Repeats 



Contrail 

De novo Assembly of the Human Genome 
•  Genome: African male NA18507 (SRA000271, Bentley et al., 2008) 
•  Input: 3.5B 36bp reads, 210bp insert (~40x coverage) 

Compressed Initial 

N 
Max 
N50 

>7 B 
27 bp 
27 bp 

>1 B 
303 bp 

< 100 bp 

Assembly of Large Genomes with Cloud Computing. 
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation. 

http://contrail-bio.sourceforge.net 

Cloud Surfing Error Correction 

4.2 M 
20,594 bp 

995 bp 

4.1 M 
20,594 bp 
1,050 bp 

3.3 M 
20,594 bp 
1,427 bp* 

Resolve Repeats 



De novo mutations and de Bruijn Graphs 

 Searching for de novo mutations in 
the families of 3000 autistic children. 
–  Assemble together reads from mom, 

dad, affected & unaffected children 
–  Look for sequence paths unique to 

affected child 

Unique to affected 

Shared by all 

MRC1L1 



Hadoop for NGS Analysis 
CloudBurst 

Highly Sensitive Short Read 
Mapping with MapReduce 

 
100x speedup mapping 
on 96 cores @ Amazon 

 
 

(Schatz, 2009) http://cloudburst-bio.sf.net 

Quake 

Quality�aware error 
correction of short reads 

 
Correct 97.9% of errors   
with 99.9% accuracy 

 
 

(Kelley, Schatz,  
Salzberg, 2010) 
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http://www.cbcb.umd.edu/software/quake/ 

Myrna 

Cloud-scale differential gene 
expression for RNA-seq 

 
Expression of 1.1 billion RNA-Seq 

reads in ~2 hours for ~$66 
 
 

(Langmead,  
Hansen, Leek, 2010) http://bowtie-bio.sf.net/myrna/ 

Genome Indexing 

Rapid Parallel Construction 
of Genome Index 

 
Construct the BWT of 

the human genome in 9 minutes 
 
 

(Menom, 
 Bhat, Schatz, 2011*) 

http://code.google.com/p/ 
genome-indexing/ 



Research Directions 
•  Scalable Sequencing 

–  Genomes, Metagenomes, *-Seq, Personalized Medicine 
–  How do we survive the tsunami of sequence data? 

o  Improved indexing & algorithms, multi-core & multi-disk systems 

•  Practically Parallel 
–  Managing n-tier memory hierarchies, crossing the PRAM chasm 
–  How do we solve problems with 1000s of cores? 

o  Locality, Fault Tolerance, Programming Languages & Parallel Systems 

•  Computational Discovery 
–  Abundant data and computation are necessary, but not sufficient 
–  How do we gain insight? 

o  Statistics & Modeling, Machine Learning, Databases, Visualization & HCI 



•  Staying afloat in the data deluge means 
computing in parallel 
–  Hadoop + Cloud computing is an attractive 

platform for large scale sequence analysis and 
computation 

•  Significant obstacles ahead 
–  Price 
–  Transfer time 
–  Privacy / security requirements 
–  Time and expertise required for development 

•  Emerging technologies are a great start, but 
we need continued research 
–  Need integration across disciplines 
–  A word of caution: new technologies are new 

Summary 
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