
Assembly of Large Genomes using Cloud Computing

Michael Schatz

July 23, 2010

Illumina Sequencing Panel

How to compute with 1000s of cores

Michael Schatz

July 23, 2010

Illumina Sequencing Panel

Parallel Architectures
•! Why Parallel?

–! CPU manufactures up against fundamental limitations

–! Need it done faster, problem is too big for a single machine

•! Multi-core (2-10s of cores)

–! Familiar programming environment

–! Limited scaling

•! GPU & FPGA (10s – 1000 of cores)

–! Very high performance for some applications

–! Limited/Slow memory, complicated development environment

•! Cluster / Distributed Programming (10s – 1000s of machines)

–! Well suited for very large data problems

–! Scheduling, Fault tolerance & Network communication

Amazon Web Services

•! “All you need is a credit card to use one
of the largest datacenters in the world”

–! Best for large infrequent computations

•! Elastic Compute Cloud (EC2)

–! On demand computing power

•! Support for Windows, Linux, & OpenSolaris

•! Starting at 8.5¢ / core / hour

•! Simple Storage Service (S3)

–! Scalable data storage

•! 10¢ / GB upload fee, 15¢ / GB monthly fee

!"#$%%&'()&*&+,-).,*/

Parallel Algorithms Spectrum

Loosely

Coupled

MapReduce/DryadLINQ

Genotyping
K-mer Counting

Embarrassingly Parallel +
Parallel Communication

Embarrassingly

Parallel

Batch Computing

Alignment
HMM Scoring

Scheduling +
Load Balance

Tightly

Coupled

MPI/MapReduce/Pregel

Graph Analysis
Genome Assembly

Loosely Coupled +
Parallel Algorithm Design

Embarrassingly Parallel
•! Batch computing

–! Each item is independent

–! Split input into many chunks

–! Process each chunk separately on a
different computer

•! Challenges

–! Distributing work, load balancing,
monitoring & restart

•! Technologies

–! Condor, Sun Grid Engine

–! Amazon Simple Queue

Elementary School Dance

Loosely Coupled

•! Divide and conquer

–! Independently process many items

–! Group partial results

–! Scan partial results into final answer

•! Challenges

–! Batch computing challenges

–! + Shuffling of huge datasets

•! Technologies

–! Hadoop, Elastic MapReduce, Dryad

–! Parallel Databases

Junior High Dance

•! MapReduce is the parallel distributed framework invented by
Google for large data computations.

–! Data and computations are spread over thousands of computers, processing
petabytes of data each day (Dean and Ghemawat, 2004)

–! Indexing the Internet, PageRank, Machine Learning, etc…

–! Hadoop is the leading open source implementation
•! GATK is an alternative implementation specifically for NGS

Hadoop MapReduce

•! Benefits
–! Scalable, Efficient, Reliable
–! Easy to Program
–! Runs on commodity computers

•! Challenges
–! Redesigning / Retooling applications

–! Not Condor, Not MPI
–! Everything in MapReduce

!"#$%%!&0,,#)&#&.!1),23/

(ATG:1)!

(TGA:1)!

(GAA:1)!

(AAC:1)!

(ACC:1)!

(CCT:1)!

(CTT:1)!

(TTA:1)!

(GAA:1)!

(AAC:1)!

(ACA:1)!

(CAA:1)!

(AAC:1)!

(ACT:1)!

(CTT:1)!

(TTA:1)!

(TTT:1)!

(TTA:1)!

(TAG:1)!

(AGG:1)!

(GGC:1)!

(GCA:1)!

(CAA:1)!

(AAC:1)!

map reduce

K-mer Counting
•! Application developers focus on 2 (+1 internal) functions

–! Map: input ! key:value pairs

–! Shuffle: Group together pairs with same key

–! Reduce: key, value-lists ! output

ATGAACCTTA!

GAACAACTTA!

TTTAGGCAAC!

ACA -> 1!

ATG -> 1!

CAA -> 1,1!

GCA -> 1!

TGA -> 1!

TTA -> 1,1,1!

ACT -> 1!

AGG -> 1!

CCT -> 1!

GGC -> 1!

TTT -> 1!

AAC -> 1,1,1,1!

ACC -> 1!

CTT -> 1,1!

GAA -> 1,1!

TAG -> 1!

ACA:1!

ATG:1!

CAA:2!

GCA:1!

TGA:1!

TTA:3!

ACT:1!

AGG:1!

CCT:1!

GGC:1!

TTT:1!

AAC:4!

ACC:1!

CTT:2!

GAA:2!

TAG:1!

Map, Shuffle & Reduce

All Run in Parallel

shuffle

 Hadoop Architecture

•! Hadoop Distributed File System (HDFS)

–! Data files partitioned into large chunks (64MB), replicated on multiple nodes

–! Computation moves to the data, rack-aware scheduling

•! Hadoop MapReduce system won the 2009 GreySort Challenge

–! Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks

Slave 5

Slave 4

Slave 3

Slave 2

Slave 1

Master Desktop

Short Read Mapping

•! Given a reference and many subject reads, report one or more “good” end-to-
end alignments per alignable read

–! Find where the read most likely originated

–! Fundamental computation for many assays

•! Genotyping RNA-Seq Methyl-Seq

•! Structural Variations Chip-Seq Hi-C-Seq

•! Desperate need for scalable solutions

–! Single human requires ~1,000 CPU hours / genome

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC…

GCGCCCTA
GCCCTATCG
GCCCTATCG

CCTATCGGA
CTATCGGAAA

AAATTTGC
AAATTTGC

TTTGCGGT
TTGCGGTA

GCGGTATA

GTATAC…

TCGGAAATT
CGGAAATTT

CGGTATAC

TAGGCTATA
AGGCTATAT
AGGCTATAT
AGGCTATAT

GGCTATATG
CTATATGCG

…CC
…CC
…CCA
…CCA
…CCAT

ATAC…
C…
C…

…CCAT
…CCATAG TATGCGCCC

GGTATAC…
CGGTATAC

Identify variants

Reference

Subject

Crossbow

•! Align billions of reads and find SNPs

–! Reuse software components: Hadoop Streaming

!"#$%%4,'51647,)(,82.19,231)-1:%.2,((4,'/

•! Map: Bowtie (Langmead et al., 2009)

–! Find best alignment for each read

–! Emit (chromosome region, alignment)

•! Reduce: SOAPsnp (Li et al., 2009)

–! Scan alignments for divergent columns

–! Accounts for sequencing error, known SNPs

•! Shuffle: Hadoop

–! Group and sort alignments by region

;
/

;
/

Performance in Amazon EC2

Asian Individual Genome

Data Loading 3.3 B reads 106.5 GB $10.65

Data Transfer 1h :15m 40 cores $3.40

Setup 0h : 15m 320 cores $13.94

Alignment 1h : 30m 320 cores $41.82

Variant Calling 1h : 00m 320 cores $27.88

End-to-end 4h : 00m $97.69

Analyze an entire human genome for ~$100 in an afternoon.
Accuracy validated at >99%

Searching for SNPs with Cloud Computing.
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. 10:R134!

!"#$%%4,'51647,)(,82.19,231)-1:%.2,((4,'/

Tightly Coupled

•! Computation that cannot be partitioned

–! Graph Analysis

–! Molecular Dynamics

–! Population simulations

•! Challenges

–! Loosely coupled challenges

–! + Parallel algorithms design

•! Technologies

–! MPI

–! MapReduce, Dryad, Pregel

High School Dance

Short Read Assembly

AAGA
ACTT
ACTC
ACTG
AGAG
CCGA
CGAC
CTCC
CTGG
CTTT
…

de Bruijn Graph Potential Genomes

AAGACTCCGACTGGGACTTT

•! Genome assembly as finding an Eulerian tour of the de Bruijn graph

–! Human genome: >3B nodes, >10B edges

•! The new short read assemblers require tremendous computation
–! Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM x weeks

–! ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours

–! SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

CTC CGA

GGA CTG

TCC CCG

GGG TGG

AAG AGA GAC ACT CTT TTT

Reads

AAGACTGGGACTCCGACTTT

Graph Compression
•! Graph construction straightforward in MapReduce

–! Straightforward extension to k-mer counting

•! After construction, many edges are unambiguous
–! Merge together compressible nodes

–! Graph physically distributed over hundreds of computers

Warmup Exercise
•! Who here was born closest to July 23?

–!You can only compare to one person at a time

Find winner among 16 teams in just 4 rounds

Fast Path Compression

 Challenges
–! Nodes stored on different computers

–! Nodes can only access direct neighbors

 Randomized List Ranking

–! Randomly assign H / T to each
compressible node

–! Compress H ! T links

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Initial Graph: 42 nodes

Fast Path Compression

 Challenges
–! Nodes stored on different computers

–! Nodes can only access direct neighbors

 Randomized List Ranking

–! Randomly assign H / T to each
compressible node

–! Compress H ! T links

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Round 1: 26 nodes (38% savings)

Fast Path Compression

 Challenges
–! Nodes stored on different computers

–! Nodes can only access direct neighbors

 Randomized List Ranking

–! Randomly assign H / T to each
compressible node

–! Compress H ! T links

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Round 2: 15 nodes (64% savings)

Fast Path Compression

 Challenges
–! Nodes stored on different computers

–! Nodes can only access direct neighbors

 Randomized List Ranking

–! Randomly assign H / T to each
compressible node

–! Compress H ! T links

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Round 2: 8 nodes (81% savings)

Fast Path Compression

 Challenges
–! Nodes stored on different computers

–! Nodes can only access direct neighbors

 Randomized List Ranking

–! Randomly assign H / T to each
compressible node

–! Compress H ! T links

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Round 3: 6 nodes (86% savings)

Fast Path Compression

 Challenges
–! Nodes stored on different computers

–! Nodes can only access direct neighbors

 Randomized List Ranking

–! Randomly assign H / T to each
compressible node

–! Compress H ! T links

 Performance
–! Compress all chains in log(S) rounds

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Round 4: 5 nodes (88% savings)

Node Types

(Chaisson, 2009)

 Isolated nodes (10%)

 Tips (46%)

 Bubbles/Non-branch (9%)

 Dead Ends (.2%)

 Half Branch (25%)

 Full Branch (10%)

Contrail

De novo bacterial assembly

•! Genome: E. coli K12 MG1655, 4.6Mbp

•! Input: 20.8M 36bp reads, 200bp insert (~150x coverage)

•! Preprocessor: Quality-Aware Error Correction

http://contrail-bio.sourceforge.net

Assembly of Large Genomes with Cloud Computing.
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

Cloud Surfing Error Correction Compressed Initial

N
Max
N50

5.1 M
27 bp
27 bp

245,131
1,079 bp

156 bp

2,769
70,725 bp
15,023 bp

1,909
90,088 bp
20,062 bp

300
149,006 bp
54,807 bp

Resolve Repeats

E. coli Assembly Quality

Assembler Contigs ! 100bp N50 (bp) Incorrect contigs

Contrail PE 300 54,807 4

Contrail SE 529 20,062 0

SOAPdenovo PE 182 89,000 5

ABySS PE 233 45,362 13

Velvet PE 286 54,459 9

EULER-SR PE 216 57,497 26

SSAKE SE 931 11,450 38

Edena SE 680 16,430 6

Incorrect contigs: Align at < 95% identity or < 95% of their length

It was the best of times, it

 of times, it was the

it was the age of

it was the worst of times, it

Contrail

De novo Assembly of the Human Genome

•! Genome: African male NA18507 (SRA000271, Bentley et al., 2008)

•! Input: 3.5B 36bp reads, 210bp insert (~40x coverage)

Compressed Initial

N
Max
N50

>7 B
27 bp
27 bp

>1 B
303 bp

< 100 bp

Assembly of Large Genomes with Cloud Computing.
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

http://contrail-bio.sourceforge.net

Cloud Surfing Error Correction

4.2 M
20,594 bp

995 bp

4.1 M
20,594 bp
1,050 bp

In progress

Resolve Repeats

Scalable Solutions for DNA Sequence Analysis

Myrna
http://bowtie-bio.sf.net/myrna

Cloud-scale differential gene
expression from RNA-seq

Ben Langmead,
Kasper Hansen, Jeff Leek

Quake
http://www.cbcb.umd.edu/software/quake

Quality!aware error correction
of sequencing reads

 !
David Kelley,

Michael Schatz, Steven Salzberg

True

k-mers

Error

k-mers

Step 1: Compute Q-mer Distribution

Compute in parallel across reads, merging

together results across files

Step 2: Correct reads

Untrusted k-mers are evaluated in order of

decreasing likelihood.

•! Surviving the data deluge means computing
in parallel

–! Cloud computing is an attractive platform for
large scale sequence analysis and computation

•! Significant obstacles ahead

–! Transfer time

–! Privacy / security requirements

–! Time and expertise required for development

–! Price

–! What are the alternatives?

•! Emerging technologies are a great start,
but we need continued research

–! A word of caution: new technologies are new

Summary

Acknowledgements

Ben Langmead

Steven Salzberg Mihai Pop

Dan Sommer

Jimmy Lin

David Kelley

Thank You!

http://www.cbcb.umd.edu/~mschatz

@mike_schatz

Genome Coverage
Idealized assembly

•! Uniform probability of a read
starting at a given position

–! p = G/N

•! Poisson distribution in coverage
along genome

–! Contigs end when there is no
overlapping read

•! Contig length is a function of
coverage and read length

–! Short reads require much
higher coverage

Assembly of Large Genomes using Second Generation Sequencing
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research.

Recent Large Assemblies

Cloud Cluster

Cloud
Storage

;/

;/

<-&=73-10/

>1&0(/

?&#/:,//

@1-,*1/

A!8B1//

7-:,/C7-(/

A.&-//

D=73-*1-:(/

D((&E/

>1(8=:(/

Internet

Cloud
Storage

Internet

Uplink

Cloud Computing and the DNA Data Race.
Schatz, MC, Langmead, B, Salzberg SL (2010) Nature Biotechnology.

Human Assembly Quality

Assembler Contigs ! 100bp N50 (bp) Total Length (Gbp)

Contrail SE 4,285,080 1,050 2.13

SOAPdenovo PE NA 4,611 2.63

SOAPdenovo SE NA 886 2.10

ABySS PE 2,762,173 1,499 2.18

ABySS SE 4,348,132 870 2.10

