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Talk Outline
| Graph algorithms

| Graph algorithms in MapReduceG ap a go t s ap educe

| Making it efficient

| Experimental results| Experimental results



What’s a graph?
| G = (V, E), where

z V represents the set of vertices (nodes)
z E represents the set of edges (links)
z Both vertices and edges may contain additional information

| Graphs are everywhere:| Graphs are everywhere:
z E.g., hyperlink structure of the web, interstate highway system, 

social networks, etc.

| Graph problems are everywhere:
z E.g., random walks, shortest paths, MST, max flow, bipartite 

matching clustering etcmatching, clustering, etc.



Source: Wikipedia (Königsberg)



Graph Representation
| G = (V, E)

| Typically represented as adjacency lists:yp ca y ep ese ted as adjace cy sts
z Each node is associated with its neighbors (via outgoing edges)
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“Message Passing” Graph Algorithms
| Large class of iterative algorithms on sparse, directed 

graphs

| At each iteration:
z Computations at each vertex
z Partial results (“messages”) passed (usually) along directed edges
z Computations at each vertex: messages aggregate to alter state

| Iterate until convergence| Iterate until convergence



A Few Examples…
| Parallel breadth-first search (SSSP)

z Messages are distances from source
z Each node emits current distance + 1
z Aggregation = MIN

| PageRank| PageRank
z Messages are partial PageRank mass
z Each node evenly distributes mass to neighbors
z Aggregation = SUM

| DNA Sequence assembly
z Michael Schatz’s dissertation



PageRank in a nutshell….
| Random surfer model:

z User starts at a random Web page
z User randomly clicks on links, surfing from page to page
z With some probability, user randomly jumps around

| PageRank| PageRank 
z Characterizes the amount of time spent on any given page
z Mathematically, a probability distribution over pages



PageRank: Defined
Given page x with inlinks t1 tn, where

z C(t) is the out-degree of t
z α is probability of random jump
z N is the total number of nodes in the graph
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Sample PageRank Iteration (1)
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Sample PageRank Iteration (2)
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PageRank in MapReduce

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

Map
n2 n4 n3 n5 n1 n2 n3n4 n5

Map

n2 n4n3 n5n1 n2 n3 n4 n5

Reduce

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]



PageRank Pseudo-Code



Why don’t distributed algorithms scale?



Source: http://www.flickr.com/photos/fusedforces/4324320625/



Three Design Patterns
| In-mapper combining: efficient local aggregation

| Smarter partitioning: create more opportunitiesS a te pa t t o g c eate o e oppo tu t es

| Schimmy: avoid shuffling the graph



In-Mapper Combining
| Use combiners

z Perform local aggregation on map output
z Downside: intermediate data is still materialized

| Better: in-mapper combining
z Preserve state across multiple map calls, aggregate messages in 

buffer, emit buffer contents at end
z Downside: requires memory management

buffer

configure

map

close



Better Partitioning
| Default: hash partitioning

z Randomly assign nodes to partitions

| Observation: many graphs exhibit local structure
z E.g., communities in social networks
z Better partitioning creates more opportunities for local aggregation

| Unfortunately  partitioning is hard!
Sometimes chick and eggz Sometimes, chick-and-egg

z But in some domains (e.g., webgraphs) take advantage of cheap 
heuristics

z For webgraphs: range partition on domain-sorted URLs



Schimmy Design Pattern
| Basic implementation contains two dataflows:

z Messages (actual computations)
z Graph structure (“bookkeeping”)

| Schimmy: separate the two data flows, shuffle only the 
messagesmessages
z Basic idea: merge join between graph structure and messages

both relations consistently partitioned and sorted by join key

S TS1 T1 S2 T2 S3 T3

both relations consistently partitioned and sorted by join key



Do the Schimmy!
| Schimmy = reduce side parallel merge join between graph 

structure and messages
z Consistent partitioning between input and intermediate data
z Mappers emit only messages (actual computation)
z Reducers read graph structure directly from HDFSReducers read graph structure directly from HDFS
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Experiments
| Cluster setup:

z 10 workers, each 2 cores (3.2 GHz Xeon), 4GB RAM, 367 GB disk
z Hadoop 0.20.0 on RHELS 5.3

| Dataset:
z First English segment of ClueWeb09 collection
z 50.2m web pages (1.53 TB uncompressed, 247 GB compressed)
z Extracted webgraph: 1.4 billion links, 7.0 GB
z Dataset arranged in crawl order

| Setup:
z Measured per-iteration running time (5 iterations)
z 100 partitions



Results

“Best Practices”
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Take-Away Messages
| Lots of interesting graph problems!

z Social network analysis
z Bioinformatics

| Reducing intermediate data is key
z Local aggregation
z Better partitioning
z Less bookkeeping



Complete details in Jimmy Lin and Michael Schatz. Design Patterns for Efficient Graph 
Algorithms in MapReduce. Proceedings of the 2010 Workshop on Mining and Learning 
with Graphs Workshop (MLG-2010), July 2010, Washington, D.C. 

htt // d /http://mapreduce.me/

Source code available in Cloud9

htt // l d9lib /http://cloud9lib.org/
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