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Shredded Book Reconstruction 

•! Dickens accidentally shreds the first printing of A Tale of Two Cities 

–! Text printed on 5 long spools 

•! How can he reconstruct the text? 

–! 5 copies x 138, 656 words / 5 words per fragment = 138k fragments 

–! The short fragments from every copy are mixed together 

–! Some fragments are identical 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 



Greedy Reconstruction 

It was the best of  

of times, it was the 

best of times, it was 

times, it was the worst 

was the best of times, 

the best of times, it  

of times, it was the 

times, it was the age 

It was the best of  

of times, it was the 

best of times, it was 

times, it was the worst 

was the best of times, 

the best of times, it  

it was the worst of 

was the worst of times, 

worst of times, it was 

of times, it was the 

times, it was the age 

it was the age of 

was the age of wisdom, 

the age of wisdom, it 

age of wisdom, it was 

of wisdom, it was the 

wisdom, it was the age 

it was the age of 

was the age of foolishness, 

the worst of times, it 

 The repeated sequence make the correct 
reconstruction ambiguous 

•! It was the best of times, it was the [worst/age] 

 Model sequence reconstruction as a graph problem. 



de Bruijn Graph Construction 

•! Dk = (V,E) 
•! V = All length-k subfragments (k < l) 
•! E = Directed edges between consecutive subfragments 

•! Nodes overlap by k-1 words 

•! Locally constructed graph reveals the global sequence structure 
•! Overlaps between sequences implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 

Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best  

best of times, it 

was the best of 

the best of times, 

of times, it was 

times, it was the 

it was the worst 

was the worst of 

worst of times, it 

the worst of times, 

it was the age 

was the age of 

the age of wisdom, 

age of wisdom, it 

of wisdom, it was 

wisdom, it was the 

A unique Eulerian tour of 
the graph reconstructs the 

original text 

If a unique tour does not 
exist, try to simplify the 

graph as much as possible 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best of times, it 

 of times, it was the 

it was the worst of times, it 

it was the age of 

the age of wisdom, it was the A unique Eulerian tour of 
the graph reconstructs the 

original text 

If a unique tour does not 
exist, try to simplify the 

graph as much as possible 



Shredded Book Mapping 

•! Dickens searches for misprints in the shredded copies 

–! Find the best match for each fragment 

–! Has to account for random and systematic variations 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the wurst age of wissdom, it was the age of  folishness, … 

It was the bist wurst of times, it was of tines, it was the the age of wisdom, it was the age of  folishness, 

It was the the wurst of times, it  best of times, it was was the ige of wisdom, it was the age of  folishness, … 

It was was the wurst of times, the best of times, it it was the age of wisdom, it was the age of  folishness, … 

It it was the wurst of was the best of times, times, it was the age of wisdom, it was the age of  folishness, … 

Confirmed 

Mismatch 

Confirmed 

Deletion 



Genomics and Evolution 

 Your genome influences (almost) all aspects of your life 

–! Anatomy & Physiology: 10 fingers & 10 toes, organs, neurons 

–! Diseases: Sickle Cell Anemia, Down Syndrome, Cancer 

–! Psychological: Intelligence, Personality, Bad Driving 

–! Genome as a recipe, not a blueprint 

 Like Dickens, we can only sequence small fragments of the genome 



DNA Sequencing 

ATCTGATAAGTCCCAGGACTTCAGT 

GCAAGGCAAACCCGAGCCCAGTTT 

TCCAGTTCTAGAGTTTCACATGATC 

GGAGTTAGTAAAAGTCCACATTGAG 

 Genome of an organism encodes the genetic information 
in long sequence of 4 DNA nucleotides: ACGT 

–! Bacteria: ~3 million bp 

–! Humans: ~3 billion bp 

 Current DNA sequencing machines can generate 1-2 
Gbp of sequence per day, in millions of short reads 

–! Per-base error rate estimated at 1-2% (Simpson et al, 2009) 

–! Sequences originate from random positions of the genome 

–! Base calling transforms raw images into DNA sequences 

 Recent studies of entire human genomes analyzed 3.3B 
(Wang, et al., 2008) & 4.0B (Bentley, et al., 2008) 36bp 
reads 

–! ~100 GB of compressed sequence data 



The Evolution of DNA Sequencing 
Year Genome Technology Cost 

2001 Venter et al. Sanger (ABI) $300,000,000 

2007 Levy et al. Sanger (ABI) $10,000,000 

2008 Wheeler et al. Roche (454) $2,000,000 

2008 Ley et al. Illumina $1,000,000 

2008 Bentley et al. Illumina $250,000 

2009 Pushkarev et al. Helicos $48,000 

2009 Drmanac et al. Complete Genomics $4,400 

(Pushkarev et al., 2009)  

Critical Computational Challenges:  Alignment and Assembly of Huge Datasets 



Why HPC? 
•! Moore’s Law is valid in 2010 

–! But CPU speed is flat 

–! Vendors adopting parallel 
solutions instead 

•! Parallel Environments 

–! Many cores, including GPUs 

–! Many computers 

–! Many disks 

•! Why parallel 

–! Need results faster 

–! Doesn’t fit on one machine 

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software 
Herb Sutter, http://www.gotw.ca/publications/concurrency-ddj.htm 



•! MapReduce is the parallel distributed framework invented by 
Google for large data computations.  

–! Data and computations are spread over thousands of computers, processing 
petabytes of data each day (Dean and Ghemawat, 2004) 

–! Indexing the Internet, PageRank, Machine Learning, etc… 

–! Hadoop is the leading open source implementation 

Hadoop MapReduce 

•! Benefits 
–! Scalable, Efficient, Reliable 
–! Easy to Program 
–! Runs on commodity computers 

•! Challenges 
–! Redesigning / Retooling applications 

–! Not Condor, Not MPI 
–! Everything in MapReduce 



(ATG:1)!

(TGA:1)!

(GAA:1)!

(AAC:1)!

(ACC:1)!

(CCT:1)!

(CTT:1)!

(TTA:1)!

(GAA:1)!

(AAC:1)!

(ACA:1)!

(CAA:1)!

(AAC:1)!

(ACT:1)!

(CTT:1)!

(TTA:1)!

(TTT:1)!

(TTA:1)!

(TAG:1)!

(AGG:1)!

(GGC:1)!

(GCA:1)!

(CAA:1)!

(AAC:1)!

map reduce 

K-mer Counting 
•! Application developers focus on 2 (+1 internal) functions 

–! Map: input ! key:value pairs 

–! Shuffle: Group together pairs with same key 

–! Reduce: key, value-lists ! output 

ATGAACCTTA!

GAACAACTTA!

TTTAGGCAAC!

ACA -> 1!

ATG -> 1!

CAA -> 1,1!

GCA -> 1!

TGA -> 1!

TTA -> 1,1,1!

ACT -> 1!

AGG -> 1!

CCT -> 1!

GGC -> 1!

TTT -> 1!

AAC -> 1,1,1,1!

ACC -> 1!

CTT -> 1,1!

GAA -> 1,1!

TAG -> 1!

ACA:1!

ATG:1!

CAA:2!

GCA:1!

TGA:1!

TTA:3!

ACT:1!

AGG:1!

CCT:1!

GGC:1!

TTT:1!

AAC:4!

ACC:1!

CTT:1!

GAA:1!

TAG:1!

Map, Shuffle & Reduce 

All Run in Parallel 

shuffle 



Slave 5 

Slave 4 

Slave 3 

 Hadoop Architecture 

Slave 2 

Slave 1 

Master Desktop 

•! Hadoop Distributed File System (HDFS) 

–! Data files partitioned into large chunks (64MB),  replicated on multiple nodes 

–! NameNode stores metadata information (block locations, directory structure) 

•! Master node (JobTracker) schedules and monitors work on slaves 

–! Computation moves to the data, rack-aware scheduling 

•! Hadoop MapReduce system won the 2009 GreySort Challenge 

–! Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks 



Short Read Mapping 

•! Given a reference and many subject reads, report one or more “good” end-to-
end alignments per alignable read 

–! Find where the read most likely originated 

–! Fundamental computation for many assays 

•! Genotyping    RNA-Seq    Methyl-Seq 

•! Structural Variations   Chip-Seq    Hi-C-Seq 

•! Desperate need for scalable solutions 

–! Single human requires >1,000 CPU hours / genome 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 

GCGCCCTA 
GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC… 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 
AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATATG 
CTATATGCG 

…CC 
…CC 
…CCA 
…CCA 
…CCAT 

ATAC… 
C… 
C… 

…CCAT 
…CCATAG TATGCGCCC 

GGTATAC… 
CGGTATAC 

Identify variants 

Reference 

Subject 



Sequence Alignment with  
Dynamic Programming 

A-CACACTA!

AGCACAC-A!

  D(i,j) = min {  D(i-1,j) + 1, 

         D(i,j-1) + 1, 

         D(i-1,j-1) + !(S(i),T(j)) }"



Seed and Extend 

•! Highly similar alignments must have 
significant exact seeds 
–! Use exact alignments to seed search for longer 

in-exact alignments 
–! Pigeon hole principle: if a read matches 

someplace with k differences, one of its k+1 
chunks must match exactly 

8 2 

9 

10bp read 

1 difference 

1 

x |s| 

7 

9 

8 

7 

6 

6 

5 

5 

9 

8 

7 

6 

5 

4 

3 

10 

5 
•! BLAST (Altschul et al., 1990) 

–! Catalog fixed length substrings (k-mers) as seeds 
–! Use Smith-Waterman dynamic programming 

algorithm to extend seeds into longer in-exact 
alignments 

–! Arguably the most widely used tool in 
computational biology 

•! 10s of thousands of citations 



•! Genomes are too large for dynamic programming 

–!Use an index to find candidate seeds to extend 

Indexing 

BLAST, MAQ, ZOOM, 

RMAP, CloudBurst 

Fixed length,      

irregular access 

Hash Table     

(>15 GB)  

MUMmer, MUMmerGPU 

Variable length,     
Pointer Jumping 

Suffix Tree 

 (>51 GB)  

Vmatch, PacBio Aligner 

Variable length, 
Binary Search 

Suffix Array    

(>15 GB) 

Burrows-Wheeler 

(3 GB) 

Bowtie, BWA 

Variable length, 
Range Queries 

$BANANA 

A$BANAN 

ANA$BAN 

ANANA$B 

BANANA$ 

NA$BANA 

NANA$BA 



!"#$%%&'()*+),-./+0(1-(),&23(,42152.6

7)8956&!,(8(-(826:6

;29*6:6

;29*6<6

89#6 -!)=26

>6

>6

,2*)&26

Read 1, Chromosome 1, 12345-12365!

Read 2, Chromosome 1, 12350-12370!

CloudBurst 

CloudBurst: Highly Sensitive Read Mapping with MapReduce. 
Schatz MC (2009) Bioinformatics. 25:1363-1369  

•! Leverage Hadoop to build a distributed inverted index of k-mers 
and find end-to-end alignments 

•! 100x speedup over RMAP with 96 cores at Amazon EC2 



MUMmerGPU 

High-throughput sequence alignment using Graphics Processing Units. 
Schatz, MC*, Trapnell, C*, Delcher, AL, Varshney, A. (2007) BMC Bioinformatics 8:474. 

Optimizing data intensive GPGPU computations for DNA sequence alignment. 
Trapnell C*, Schatz MC*. (2009) Parallel Computing. 35(8-9):429-440. 

1 

2 3 

4 

!"#$%%8)882,4#)1-(),&23(,42152.6

•! Map many reads simultaneously on a GPU 

•! Index reference using a suffix tree 

•! Find matches by walking the tree 

•! Find coordinates with depth first search 

•! Performance on nVidia GTX 8800 

•! Match kernel was ~10x faster than CPU 

•! Print kernel was ~4x faster than CPU 

•! End-to-end runtime ~4x faster than CPU 



Burrows-Wheeler Transform 

•! Reversible permutation of the characters in a text 

•! BWT(T) is the index for T 

Burrows-Wheeler 

Matrix BWM(T) 

BWT(T) T 

A block sorting lossless data compression algorithm. 
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124 

Rank: 2 

Rank: 2 

LF Property  

implicitly encodes 
Suffix Array 



Bowtie: Ultrafast Short Read Aligner 

•! Quality-aware backtracking of BWT to rapidly find 
the best alignment(s) for each read 

•! BWT precomputed once, easy to distribute, and 
analyze in RAM  

–! 3 GB for whole human genome 

•! Support for paired-end alignment, quality guarantees, 
etc…  
–! Langmead B,  Trapnell C, Pop M, Salzberg SL. (2009) Ultrafast and 

memory-efficient alignment of short DNA sequences to the human 

genome. Genome Biology 10:R25.  



Bowtie algorithm 

Query: 

A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 

A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 

A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 

A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 

A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 

A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 

A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 

A AT G T TA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 

A AT G T TA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Comparison to MAQ & SOAP 

Performance and sensitivity of Bowtie v0.9.6, SOAP v1.10, Maq v0.6.6 when aligning 8.84M reads from the 1000 Genome 
project [NCBI Short Read Archive:SRR001115] trimmed to 35 base pairs.  The “soap.contig” version of the SOAP binary was 

used. SOAP could not be run on the PC because SOAP’s memory footprint exceeds the PC’s physical memory.  For the SOAP 
comparison, Bowtie was invoked with “-v 2” to mimic SOAP’s default matching policy (which allows up to 2 mismatches in the 

alignment and disregards quality values).  For the Maq comparison Bowtie is run with its default policy, which mimics Maq’s 
default policy of allowing up to 2 mismatches in the first 28 bases and enforcing an overall limit of 70 on the sum of the quality 
values at all mismatched positions.  To make Bowtie’s memory footprint more comparable to Maq’s, Bowtie is invoked with the 

“-z” option in all experiments to ensure only the forward or mirror index is resident in memory at one time. 



Crossbow 

•! Align billions of reads and find SNPs 

–! Reuse software components: Hadoop Streaming 

!"#$%%+(?@2/+0(1-(),&23(,42152.%&,(--+(?6

•! Map: Bowtie (Langmead et al., 2009) 

–! Find best alignment for each read 

–! Emit (chromosome region, alignment) 

•! Reduce: SOAPsnp (Li et al., 2009) 

–! Scan alignments for divergent columns 

–! Accounts for sequencing error, known SNPs 

•! Shuffle: Hadoop 

–! Group and sort alignments by region 

>
6

>
6



Performance in Amazon EC2 

Asian Individual Genome 

Data Loading 3.3 B reads 106.5 GB $10.65 

Data Transfer 1h :15m 40 cores $3.40 

Setup 0h : 15m 320 cores $13.94 

Alignment 1h : 30m 320 cores $41.82 

Variant Calling 1h : 00m 320 cores $27.88 

End-to-end 4h : 00m $97.69 

Analyze an entire human genome for ~$100 in an afternoon. 
Accuracy validated at >99% 

Searching for SNPs with Cloud Computing. 
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology.  

!"#$%%+(?@2/+0(1-(),&23(,42152.%&,(--+(?6



Hardware Accelerated Mapping 

Complexity Index Size Access Style 

Dynamic 
Programming 

Very Simple N/A Regular Grid 

Seed Hash Table Simple Moderate Random Access 

Suffix Tree Moderate Large Pointer Jumping 

Suffix Array Moderate Moderate Binary Search 

BWT Difficult Small Range Queries 



Short Read Assembly 

AAGA 
ACTT  
ACTC 
ACTG 
AGAG 
CCGA 
CGAC 
CTCC 
CTGG 
CTTT 
… 

de Bruijn Graph Potential Genomes 

AAGACTCCGACTGGGACTTT 

•! Genome assembly as finding an Eulerian tour of the de Bruijn graph 

–! Human genome: >3B nodes, >10B edges 

•! The new short read assemblers require tremendous computation 
–! Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM 

–! ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours 

–! SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM 

CTC CGA 

GGA CTG 

TCC CCG 

GGG TGG 

AAG AGA GAC ACT CTT TTT 

Reads 

AAGACTGGGACTCCGACTTT 



Contrail 

De Novo Assembly of the Human Genome 

•! Genome: African male NA18507 (SRA000271, Bentley et al., 2008) 

•! Input: 3.5B 36bp reads, 210bp insert (~40x coverage) 

Assembly of Large Genomes with Cloud Computing. 
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation. 

http://contrail-bio.sourceforge.net 

Error Correction!Compressed!Initial!

N!
Max!
N50!

>7 B!
27 bp!
27 bp!

>1 B!
303 bp!

<100 bp!

4.2 M!
20,594 bp!

995 bp!

4.1 M!
20,594 bp!

1050 bp!

Resolve Repeats!



 “NextGen sequencing has completely outrun the 
ability of good bioinformatics people to keep up 

with the data and use it well… We need a 
MASSIVE effort in the development of tools for 

“normal” biologists to make better use of 
massive sequence databases.” 

    Jonathan Eisen – JGI Users Meeting – 3/28/09 

•! Surviving the data deluge means computing in parallel 

–! Good solutions for “easy” parallel problems, but 
gets fundamentally more difficult as dependencies 
get deeper 

•! Emerging technologies are a great start, but we need 
continued research integrating computational biology 
with research in HPC 

–! A word of caution: new technologies are new 

Summary 
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Burrows-Wheeler Transform 

•! Recreating T from BWT(T) 

–!Start in the first row and apply LF repeatedly, 
accumulating predecessors along the way 

Original T 

BWT/Bowtie slides from Ben Langmead 



Exact Matching 

•! LFc(r, c) does the same thing as LF(r) but it 
ignores r’s actual final character and 
“pretends” it’s c: 

Rank: 2 Rank: 2 

L 

F 

LFc(5, g) = 8  

g 



Exact Matching 

•! Start with a range, (top, bot) encompassing all 
rows and repeatedly apply LFc: 

top = LFc(top, qc); bot = LFc(bot, qc) 

qc = the next character to the left in the query 

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000. 



Checkpointing in FM Index 

•! LF(i, qc) must determine the rank of qc in row i 

•! Naïve way: count occurrences of qc in all previous rows 

–! Linear in length of text – too slow 

Scanned by naïve 

rank calculation 

BWM(T) 



Checkpointing in FM Index 

•! Solution (due to F&M): pre-calculate 
cumulative counts for A/C/G/T up to 
periodic checkpoints in BWT 

•! LF(i, qc) is now constant time 

(if space between checkpoints is considered constant) 

Rank: 309 

Rank: 242 

BWM(T) 



Rows to Reference Positions 

•! Once we know a row contains a legal alignment, how do 
we determine its position in the reference? 

Where am I? 



Rows to Reference Positions 

•! Naïve solution 1: Use UNPERMUTE to walk back to the 
beginning of the text; number of steps = offset of hit 

•! Linear in length of text – too slow 

2 steps, so hit offset = 2 



•! Naïve solution 2: Keep pre-calculated offsets (the suffix 
array) in memory and do lookups 

•! Suffix array is ~12 GB for human – too big 

Rows to Reference Positions 

hit offset = 2 



•! Hybrid solution (due to F&M): Pre-calculate offsets for 
some “marked” rows; use UNPERMUTE to walk from the 
row of interest to next marked row to the left 

•! Bowtie marks every 32nd row by default (configurable) 

Rows to Reference Positions 

1 step 

offset = 1 

Hit offset = 1 + 1 = 2 



FM Index is Small 

•! Entire FM Index on DNA reference consists of: 

–! BWT (same size as T) 

–! Checkpoints (~15% size of T) 

–! SA sample (~50% size of T) 

•! Total: ~1.65x the size of T 

>45x >15x >15x ~1.65x 

Assuming 2-bit-per-base encoding and  
no compression, as in Bowtie 

Assuming a 16-byte checkpoint every 
448 characters, as in Bowtie 

Assuming Bowtie defaults for suffix-
array sampling rate, etc 


