Commodity Computing in Genomics Research

Michael Schatz, Ben Langmead, Dan Sommer, Mihai Pop

Nov 16, 2009 Cloud Computing for Systems and Computational Biology Workshop Supercomputing Conference '09

High Throughput Biology

- These studies require massive computation
 - Individual Human Genome: 3.3 Billion 35bp, 106 GB (Wang et al., 2008)
 - Tens of thousands of CPU hours to analyze
- How are we going to store and analyze all that data?
 - If only there was a system for inexpensive parallel computing...

Hadoop MapReduce

- MapReduce is the parallel distributed framework invented by Google for large data computations.
 - Data and computations are spread over thousands of computers, processing petabytes of data each day (Dean and Ghemawat, 2004)
 - Hadoop is the leading open source implementation
- Benefits
 - Scalable, Efficient, Reliable
 - Easy to Program
 - Runs on commodity computers
- Challenges
 - Redesigning / Retooling applications
 - Not SunGrid, Not MPI
 - Everything in MapReduce

K-mer Counting with MapReduce

- Application developers focus on 2 (+1 internal) functions
 - Map: input → key, value pairs
 - Shuffle: Group together pairs with same key
 - Reduce: key, value-lists → output

Map, Shuffle & Reduce
All Run in Parallel

ATGAACCTTA

```
ATG,1 AAC,1 CTT,1
TGA,1 ACC,1 TTA,1
GAA,1 CCT,1
```

ACA -> 1 ATG -> 1 CAA -> 1,1 GCA -> 1 TGA -> 1 TTA -> 1,1,1

```
ACA:1
ATG:1
CAA:2
GCA:1
TGA:1
TTA:3
```

GAACAACTTA

TTTAGGCAAC

```
TTT,1 AGG,1 CAA,1
TTA,1 GGC,1 AAC,1
TAG,1 GCA,1
```

map

shuffle

reduce

Short Read Mapping with MapReduce

- Given a reference and many subject reads, report one or more "good" end-to-end alignments per alignable read
 - Maps the read to where it originated
- Mapping of a whole human requires ~1,000 CPU hours
 - Alignments are "embarassingly parallel" by read
 - Variant detection is parallel by chromosome region

CloudBurst

http://cloudburst-bio.sourceforge.net

- Build a distributed index of k-mers and find end-to-end alignments
- 100x speedup over RMAP (Smith et al., 2008) with 96 cores in Amazon EC2

CloudBurst: Highly Sensitive Read Mapping with MapReduce.

Schatz MC (2009) Bioinformatics. 25:1363-1369

Bowtie

http://bowtie-bio.sourceforge.net

- Quality-aware search of Burrows-Wheeler Transform
 (BWT) to rapidly find the best alignment(s) for each read
 - 3GB BWT precomputed once, reused many times
 - easy to distribute, fits into RAM
- Support for paired-end alignment, quality guarantees, uniqueness guarantees, etc...

Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) *Genome Biology* 10:R25.

Crossbow

http://bowtie-bio.sourceforge.net/crossbow

- Align billions of reads and find SNPs
 - Reuse software components: Hadoop Streaming
- Map: Bowtie (Langmead et al., 2009)
 - Emit (chromome region, alignment)
- Shuffle: Hadoop
 - Group and sort alignments by region

- Reduce: SOAPsnp (Li et al., 2009)
 - Scan alignments for divergent columns
 - Accounts for sequencing error, known SNPs

Validation Results

http://bowtie-bio.sourceforge.net/crossbow

	Chromosome 22			Chromosome X		
SNP Calling	True sites	Sensitivity	Precision	True sites	Sensitivity	Precision
All	46,586	99.0%	99.1%	102,219	99.0%	99.6%
only known	36,096	99.8%	99.9%	71,976	99.9%	99.9%
only novel	10,490	96.3%	96.3%	30,243	96.8%	98.8%
only homozygous	14,858	98.7%	99.9%	N/A	N/A	N/A
only heterozygous	31,728	99.2%	98.8%	N/A	N/A	N/A

- Simulate SNPs in the genome at expected rates
- Simulated 40x coverage paired-end 35bp reads with empirically derived errors, insert size distributions

Performance in Amazon EC2

http://bowtie-bio.sourceforge.net/crossbow

	Asian Individual Genome				
Data Loading	3.3 B reads	106.5 GB	\$10.65		
Data Transfer	Ih:15m	20+1 Medium	\$3.40		
Setup	0h : I5m	40+1 X-Large	\$13.94		
Alignment	Ih:30m	40+1 X-Large	\$41.82		
Variant Calling	Ih:00m	40+1 X-Large	\$27.88		
End-to-end	4h : 00m		\$97.69		

Analyze an entire human genome for ~\$100 in an afternoon.

Accuracy validated at 99%

Searching for SNPs with Cloud Computing.

Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) In Press.

Genomics without a reference

- The new short read assemblers require tremendous computation
 - Velvet (Zerbino & Birney, 2008) on 2 Mbp S. suis requires > 2GB of RAM
 - ABySS (Simpson et al., 2009) on human requires ~4 days on 168 cores

Genome Assembly with MapReduce

Challenges

- Nodes stored on different computers
- Node only knows immediate neighbors

Randomized List Ranking

- Randomly assign H/T to each compressible node
- Compress (H)-> T links
- E=O(log S) MapReduce cycles
 - B. anthracis 268,925 -> 19 cycles
 - Human: 37,172 ->16 cycles

Randomized Speed-ups in Parallel Computation.

Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Contrail

http://contrail-bio.sourceforge.net

Genome Assembly with MapReduce

- I. Build Compressed de Bruijn Graph
- 2. Correct Errors & Resolve Short Repeats
- 3. Cloud Surfing: Mate directed repeat resolution & scaffolding

Assembly of Large Genomes with Cloud Computing.

Schatz MC, Sommer D, Pop M, et al. In Preparation.

Summary

- Hadoop is well suited to big data biological computation
- 2. Hadoop Streaming for easy scaling of existing software
- 3. Cloud computing is an attractive platform to augment resources
- 4. Look for many cloud computing & MapReduce solutions this year

Acknowledgements

Ben Langmead

Mihai Pop

Jimmy Lin

Steven Salzberg

Thank You!

Crossbow Poster: Tuesday, 5:15PM - 7:00PM Oregon Ballroom Lobby

Doctoral Showcase: Thursday, 3:45PM - 4:00PM Room PB251

http://www.cbcb.umd.edu/~mschatz

Burrows-Wheeler Transform

Reversible permutation of the characters in a text

A block sorting lossless data compression algorithm.

Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124

Reference

BWT(Reference)

Query: AATGATACGGCGACCACCGAGATCTA

BWT(Reference)

Query:

AATGATACGGCGACCACCGAGATCTA

Query: AATGATACGGCGACCACCGAGATCTA

Query: AATGATACGGCGACCCACCGAGATCTA

Query: AATGA TACGGCGACCACCGAGATCTA

Reference

BWT(Reference)

Query: AATGATACGGCGACCACCGAGATCTA

Query: AATGT TACGGCGACCACCGAGATCTA

Query:
AATGTTACGGCGACCACCGAGATCTA

