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A Brief History of the Amazon Cloud 

•! Urban Legend 

–!Additional capacity added every fall for the holiday 
shopping season, underutilized rest of the year… 

•! Official Story 

–!Amazon is a technology company 

•! Different divisions of Amazon are loosely coupled 

–!Amazon Web Services is the 3rd Business Division 

•! Retail & Seller Businesses 



Source: http://www.slideshare.net/tracylaxdal/aws-startup-event-seattle-2009-aws-overview 



Source: http://www.slideshare.net/tracylaxdal/aws-startup-event-seattle-2009-aws-overview 



Amazon Web Services 

•! Elastic Compute Cloud (EC2) 

–! On demand computing power 
•! Support for Windows, Linux, & OpenSolaris 

•! Simple Storage Service (S3) 

–! Scalable data storage 
•! 17¢ / GB transfer fee, 15¢ / GB monthly fee 

•! Elastic MapReduce (EMR) 

–!  Point-and-click Hadoop Workflows 

•! Computation runs on EC2 



EC2 Pricing and Models 

Small High-CPU 
Medium 

High-CPU  
Extra Large 

Cores 1 @ 1.0 GHz 2 @ 2.5 GHz 8 @ 2.5 GHz 

RAM 1.7 GB 1.7 GB 7 GB 

Local Disk 150 GB 350 GB 1690 GB 

Price 10¢ / hour 20¢ / hour 80¢ / hour 

•! Instances boot on demand from virtual disk image 

•! Stock images available for common configurations & operating systems 

•! Custom images “easy” to create 

•! Reserved Instances 

•! Pay small upfront fee, lower hourly rate 



EC2 - 5 

EC2 - 4 

EC2 - 3 

AWS Use Model 

AWS 

S3 EC2 - 2 

EC2 - 1 

Desktop 

After machines spool up, ssh to instance them like any other server. 
Use S3 for persistent data storage, with very fast interconnect to EC2 



•! MapReduce is the parallel distributed framework invented by 
Google for large data computations.  

–! Data and computations are spread over thousands of computers, processing 
petabytes of data each day (Dean and Ghemawat, 2004) 

–! PankRank, Inverted Index Construction, Log Analysis, Distributed Grep,… 

•! Hadoop is the leading open source implementation of MapReduce 

–! Sponsored by Yahoo, Google,  Amazon, and other major vendors 

–! Clusters with 10k nodes, petabytes of data 

Hadoop MapReduce 

•! Benefits 
–! Scalable, Efficient, Reliable 
–! Easy to Program 
–! Open Source 

•! Challenges 
–! Redesigning / Retooling applications 

–! Not SunGrid, Not MPI 
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K-mer Counting with MapReduce 

•! Application developers focus on 2 (+1 internal) functions 

–! Map: input -> key, value pairs 

–! Shuffle: Group together pairs with same key 

–! Reduce: key, value-lists -> output 
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All Run in Parallel 



Slave 5 

Slave 4 
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 Hadoop Use Model 

Slave 2 

Slave 1 

Master Desktop 

•! Hadoop Distributed File System (HDFS) 

–! Data files partitioned into large chunks (64MB),  replicated on multiple nodes 

–! NameNode stores metadata information (block locations, directory structure) 

•! Master node (JobTracker) schedules and monitors work on slaves 

–! Computation moves to the data 



Hadoop for Computational Biology? 

•! Biological research requires an increasing amount of data 

•! Big data computing requires thinking in parallel 

–! Hadoop may be an enabling technology 

1000 Genomes Human Microbiome Global Ocean Survey 



Short Read Mapping 

•! Recent studies of entire human genomes analyzed billions of reads 
–! Asian Individual Genome: 3.3 Billion 35bp, 104 GB (Wang et al., 2008) 

–! African Individual Genome: 4.0 Billion 35bp, 144 GB (Bentley et al., 2008) 

•! Alignment computation required >10,000 CPU hours* 
–! Alignments are “embarassingly parallel” by read 

–! Variant detection is parallel by chromosome region 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 

GCGCCCTA 
GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC… 

TCGGAAATT 
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…CC 
…CC 
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…CCAT 

ATAC… 
C… 
C… 

…CCAT 
…CCATAG TATGCGCCC 

GGTATAC… 
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Identify variants 

Reference 

Subject 



Seed and Extend 

•! Good alignments must have significant 
exact alignments 
–! Use exact alignments to seed search for longer 

in-exact alignments 
–! Minimal exact alignment length = l/(k+1) 8 2 
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•! RMAP (Smith et al, 2008) 
–! Catalog mers in reads as seeds 
–! Stream across reference sequence 
–! Count mismatches of reads anchored by seeds 

•! Expensive to scale to large experiments 
or highly sensitive searches 
–! If only there was a way to parallelize execution… 



1.! Map: Catalog K-mers 
•! Emit k-mers in the genome and reads 
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Read 1, Chromosome 1, 12345-12365!

Read 2, Chromosome 1, 12350-12370!

CloudBurst 

Schatz, MC (2009) CloudBurst: Highly Sensitive Read Mapping with MapReduce. Bioinformatics. 25:1363-1369  
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Millions of Reads 

Running Time vs Number of Reads on Chr 1 
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•! Evaluate running time on 
local 24 core cluster 

–! Running time increases 
linearly with the number of 
reads 

•! Compare to RMAP 

–! Highly sensitive alignments 
have better than 24x linear 
speedup.  

•! Produces identical results 
in a fraction of the time 

CloudBurst Results 
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•! CloudBurst running times for mapping 7M reads to human chromosome 22 with at 
most 4 mismatches on the local and EC 2 clusters. 

•! The 24-core Amazon High-CPU Medium Instance EC2 cluster is faster than the 24-
core Small Instance EC2 cluster, and the 24-core local dedicated cluster. 

•! The 96-core cluster is 3.5x faster than the 24-core, and 100x faster than serial RMAP. 
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Running Time on Local vs EC2 Clusters 

0 

500 

1000 

1500 

2000 

24 48 72 96 

R
u

n
n

in
g
 t

im
e
 (

s)
 

Number of Cores 

Running Time on EC2  
High-CPU Medium Instance Cluster  

EC2 Evaluation 



CloudBurst Reflections 

•! CloudBurst efficiently reports every k-difference 
alignment of every read 

–! But many applications only need the best alignment 

–! Finding just the best alignment needs an in-memory index 

Suffix tree  

(>51 GB) 

Suffix array  

(>15 GB) 

Seed hash tables (>15 GB) 
Many variants, incl. spaced seeds 



Burrows-Wheeler Transform 

•! Reversible permutation of the characters in a text 

•! BWT(T) is the index for T 

Burrows-Wheeler 

Matrix BWM(T) 

BWT(T) T 

Burrows M, Wheeler DJ: A block sorting lossless data 
compression algorithm. Digital Equipment Corporation, Palo 

Alto, CA 1994, Technical Report 124; 1994 

Rank: 2 

Rank: 2 

LF Property  

implicitly encodes 
Suffix Array 



Bowtie: Ultrafast Short Read Aligner 

•! Quality-aware backtracking of BWT to rapidly find 
the best alignment(s) for each read 

•! BWT precomputed once, easy to distribute, and 
analyze in RAM  

–! 3 GB for whole human genome 

•! Support for paired-end alignment, quality guarantees, 
etc…  
–! Langmead B,  Trapnell C, Pop M, Salzberg SL. (2009) Ultrafast and 

memory-efficient alignment of short DNA sequences to the human 

genome. Genome Biology 10:R25.  



Bowtie algorithm 

Query: 

A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 
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Bowtie algorithm 

Query: 

A AT G ATA C G G C G A C C A C C G A G AT C TA 

Reference 
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Bowtie algorithm 

Query: 

A AT G T TA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Bowtie algorithm 

Query: 

A AT G T TA C G G C G A C C A C C G A G AT C TA 

Reference 

BWT( Reference ) 



Comparison to MAQ & SOAP 

Performance and sensitivity of Bowtie v0.9.6, SOAP v1.10, Maq v0.6.6 when aligning 8.84M reads from the 1000 Genome 
project [NCBI Short Read Archive:SRR001115] trimmed to 35 base pairs.  The “soap.contig” version of the SOAP binary was 

used. SOAP could not be run on the PC because SOAP’s memory footprint exceeds the PC’s physical memory.  For the SOAP 
comparison, Bowtie was invoked with “-v 2” to mimic SOAP’s default matching policy (which allows up to 2 mismatches in the 

alignment and disregards quality values).  For the Maq comparison Bowtie is run with its default policy, which mimics Maq’s 
default policy of allowing up to 2 mismatches in the first 28 bases and enforcing an overall limit of 70 on the sum of the quality 
values at all mismatched positions.  To make Bowtie’s memory footprint more comparable to Maq’s, Bowtie is invoked with the 

“-z” option in all experiments to ensure only the forward or mirror index is resident in memory at one time. 



Crossbow: Rapid Whole Genome SNP Analysis 

•! Align billions of reads and find SNPs 

–! Reuse software components: Hadoop Streaming 

•! Map: Bowtie 

–! Emit (chromome region, alignment) 

?
&

?
&

•! Shuffle: Hadoop 

–! Group and sort alignments by region 

•! Reduce: SoapSNP (Li et al, 2009) 

–! Scan alignments for divergent columns 

–! Accounts for sequencing error, known SNPs 



Results coming soon 



Short Read Genome Assembly 
•! Several new assemblers developed for short read data 

–! Variations on compressed de Bruijn graphs 
Velvet (Zerbino & Birney, 2008)   EULER-USR (Chaisson et al, 2009) 

ALLPATHS (Butler et al, 2008)   ABySS (Simpson et al, 2009) 

•! Short Read Assembler Outline 

1.! Construct compressed de Bruijn Graph 

2.! Remove sequencing error from graph 

3.! Use mate-pairs to resolve ambiguities 

•! Successful for small to medium genomes 
–! 2Mbp bacteria – 39Mbp fungal assembly 



de Bruijn Graph Construction 

•! Dk = (V,E) 

•! V = All length-k mers (k < l) 

•! E = Directed edges between consecutive mers 
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Compressed Graph 

CTG 



Genome Assembly with MapReduce 

•! The new short read assemblers require tremendous computation 

–! Velvet on 48x coverage of 2 Mbp S. suis requires > 2GB of RAM 

–! ABySS on 42x coverage of human required ~4 days on 168 cores 

•! Challenge: How to efficiently implement assembly algorithms in 
(restricted) MapReduce environment? 

–! Different nodes of the graph are stored on different machines. 



Parallel Path Compression 
•! List Ranking Problem 

–! General problem of parallel linked 
list operations 

•! Pointer Jumping (Wyllie, 1979) 

–! Add tail pointer to each node 

–! In each round, advance (double) 
the tail pointer 

–! Collect and concatenate all the 
nodes in a simple path  

–! O(log S) parallel cycles 
•! B. anthracis 268,925 -> 19+1 cycles 

•! Human:  37,172 ->16+1 cycles 



Summary 
1.! Hadoop is well suited to big data  

biological computation 

2.! Hadoop Streaming for easy scaling 
of existing software 

3.! Cloud computing is an attractive 
platform to augment resources 

4.! Look for many cloud computing & 
MapReduce solutions this year 
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http://www.cbcb.umd.edu/~mschatz 



Burrows-Wheeler Transform 

•! Property that makes BWT(T) reversible is LF 
Mapping 

–! ith occurrence of a character in Last column is 
same text occurrence as the ith occurrence in First 
column 

–!LF(r): function taking L row r to corresponding F 

T 

Rank: 2 

Rank: 2 

L 

F 



Burrows-Wheeler Transform 

•! Recreating T from BWT(T) 

–!Start in the first row and apply LF repeatedly, 
accumulating predecessors along the way 

Original T 



Exact Matching 

•! LFc(r, c) does the same thing as LF(r) but it 
ignores r’s actual final character and 
“pretends” it’s c: 

Rank: 2 Rank: 2 

L 

F 

LFc(5, g) = 8  

g 



Exact Matching 

•! Start with a range, (top, bot) encompassing all 
rows and repeatedly apply LFc: 

top = LFc(top, qc); bot = LFc(bot, qc) 

qc = the next character to the left in the query 

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000. 



Exact Matching 

•! If range becomes empty (top = bot) the 
query suffix (and therefore the query as a 
whole) does not occur 


