

Beyond the Genome 2013

Informatics Challenge

Michael Schatz Sven-Eric Schelhorn, October 2013

The prize

iPad mini

The problem, 1

Reads

A metagenomic sample was generated by mixing portions of the reference sequences of several microbial species. Sequence reads were simulated from these portions. Within each portion of a reference sequence, a foreign insert (i.e, not originating from any of the microbial species) was placed. These inserts encode a message.

The problem, 2

Message

One of the inserts corresponds to the 'wildtype', as deposited in public sequence databases such as NCBI nt. The other inserts are slight variations of this wildtype (>90% nuc. similarity).

The message we are seeking is encoded as nucleotide variants of the non-wildtype inserts with respect to the wildtype insert.

Consequently, there is one message for each non-wildtype insert in the read data. All messages together yield a quote that is the solution to the challenge.

How to encode a message into DNA

Science	AAASLORG FEEDRACK HELP LIBRARIANS Science Magazine	Enter Saaruh Terre	SEARCH ADVANCED					
MAAAS	NEWS SCIENCE JOURNALS CAREERS BLOGS & COMMUNITIES MULTIMEDIA	COLLECTIONS						
Science The V	Aorid's Leading Journal of Original Scientific Research, Global News, and Commentary, It issue Previous Issues Science Express Science Products My Science: About the Journal	Mar.						
one > Science Macazine > Article Views Abstract Full Text Full Text (PDF) Supplementary	Science Expense > Church et al. Published Online August 16 2012 < Science Science DOI: 10.1126/science.1226355 BREVIA Next-Generation Digital Information Storage in DNA	e Express Index t to Comment (0)	Get all of Science					
Materials Article Tools	Ceorge M. Church ^{3,2} , Yuan Gao ³ , Sriram Kosuri ^{3,2,2} ± Author Affiliations _^^To whom correspondence should be addressed. E-mail: <u>sri.kosuri@wyss.harvard.edu</u>		Join Rowl					
Download Citation Alert Me When Article Is Cited	AISTRACT Digital information is accumulating at an astounding rate, straining our ability to store and archive IL DNA is among the most dense and stable information media known. The development of new technologies in both DNA synthesis and sequencing make DNA an increasingly feasible digital storage medium. Here, we develop a strategy to encode arbitrary digital information in DNA, write a 5.27-megabit book using DNA microchips, and read the book using next-generation DNA sequencing.							
Post to CiteULike E-mail This Page Get Permission View PubMed Citation								
Related Content			0					

Each position represents a power of 2 :

$$01001000 = 8 + 64 = 72$$

All characters in the ASCII set can be represented by one byte (0 - 127 (= 27-1))

ASCII code table

Dec	н	0:1	cha	r	Dec	Hx	0:1	Henl	Chr	Dec	Hx	0d	Hml	Chr	Dec	Hx	0:1	Html Ct	te .
0	0	000	MUL.	(null)	32	20	040	4#32;	Space	64	40	100	1864		96	60	140	6896;	
1	1	001	SOH	(start of heading)	33	21	041	4#33;	1	65	41	101	4\$65.	A	97	61	141	4#97;	4
ź	2	002	STX	Istart of text)	34	22	042	4#34;	-	66	42	102	4866.	8	98	62	142	4898;	b
3	3	003	ETX	(end of text)	35	23	043	4#35;		67	43	103	4867	0	99	63	143	4\$99;	C .
-4	4	004	EQT	[end of transmission]	36	24	044	4#362	4	68	44	104	4#68.	D.	100	64	144	4#100;	d
5	5	005	ENQ.	(enquiry)	37	25	045	4#372	4	69	45	105	4869.	E	101	65	145	4\$1013	÷.
- 6	- 6	006	ACK	(acknowledge)	38	26	046	4#382	4	70	46	105	4970.	F.	102	66	146	4\$1023	1
7	7	007	DEL	(hell)	39	27	047	4#392		71	47	107	4471.	0	103	67	147	4\$103;	a.
. 6	0	010	D.T	(backspace)	40	28	0.50	6#402	4	72	60	110	4872.	H	104	68	150	4#1043	h
. 9	. 9	011	TAB	(horizontal tab)	-41	29	051	4#412	1	73	49	111	4#73.	11	105	69	151	4#1053	4
10	A	012	LF-	[NL line feed, new line]	42	28	052	4#422		.74	44.	112	4474	1	106	68	152	4#106.	3
11	10	013	VT.	(vertical tab)	41	28	053	4#432		75	10	113	4\$75.	. K	107	68	153	4\$107:	le .
12	c	014	TT.	(NP form feed, new page)	-44	20	054	4#442	8	76	40	114	4#76.	1	108	6C	154	4#108/	1
13	D	015	CR.	(carriage return)	45	25	055	4#451	8	77	1	115	4877.	1	109	60	155	4#1091	14
14	E	016	50	(shift out)	46	22	0.56	4#461	200	78	12	116	4478.	M.	110	GE.	156	4#1103	TI.
15	7	017	st	[shift in]	47	2F	057	48472	1	79	47	117	6879.	0	111	GF.	157	481111	9
16	10	020	DIE	(data link escape)	43	30	060	4#492	0	80	50	120	480.	1.8	112	70	160	4#1121	р.
17	11	021	DC1	(device control 1)	40	31	061	68491	1	81	51	121	4881.	0	113	71	161	481137	P
18	12	022	DC2	[device control 2]	50	32	062	4#502	2	82	\$2	122	4882.	R	114	72	162	4#1141	=
19	13	023	DC3	(device control 3)	51	33	063	4#512	3	83	53	123	4#83.	1.8	115	73	163	4\$1157	#.
20	14	024	DC4	[device control 4]	52	34	064	4#522	4	84	\$4	124	4884	17	116	74	164	481161	5
21	15	025	MAR	(negative acknowledge)	53	35	065	4#532	5	85	55	125	4885.	U	117	75	165	4\$117;	11
22	16	026	STR	(synchronous idle)	54	36	066	4#542	6	86	86	126	4806.	Y	118	76	166	4\$118;	v
23	17	027	ETB	(end of trans. block)	55	37	067	4#552	7	87	\$7	127	4#87.	1	119	77	167	4#119;	10
24	18	030	CAN	(cancel)	56	38	070	4#562	8	88	58	130	4588.	1	120	78	170	4#120;	×
25	19	031	ER.	(end of medium)	57	39	071	4#572	9	89	\$5	131	4889.	Y	121	79	171	4\$1217	Y
26	14	032	575	[substitute]	58	38	072	4#502	1	50	SA.	132	4890.	2	122	78	172	4\$122;	=
27	18	033	ESC	(escape)	59	38	073	4#592	2	91	58	133	4#91.	1	123	7B	173	4\$123;	1.5
28	10	034	23	[file separator]	60	30	074	4#60;	4	92	\$C	134	4892.	1	124	70	174	4#124;	1
29	ID	035	03	(group separator)	61	30	075	4#617	+	93	50	135	4893.	1	125	7D	175	4#125;	1
30	18	036	83	(record separator)	62	32	076	4#62;	>	54	12	136	4894	1.1	126	78	176	4#126;	-
31	18	037	US.	(unit separator)	63	3F	077	4#63;	7	95	SF	137	4895	-	127	71	177	4\$127;	DEL

7

Example

Text Hello, world!

Text Hello, world! ASCII 72 101 108 108 111 44 32 119 111 114 108 100 33

Binary text

Text Hello, world!

ASCII 72 101 108 108 111 44 32 119 111 114 108 100 33

DNA encoding

0 becomes A or C I becomes T or G

Full example

Text	Hello, world!	
ASCII	72 101 108 108 111 44 32 108 100 33	119 111 114
Binary	01001000 01100101 0110110 01101111 00101100 0010000 01101111 01110010 0110110	00 01101100 00 01110111 00 01100100
DNA	AGCAGCCC ATTCCGAT CTTATTA CGGAGGGG AATATGCC ACTACCC ATTCTTGT ATTTAATC CTGCGGA	AC CTTCTTCC CA ATGTATTT AA CGTAAGCC

How we prepared the data

- I. Downloaded a couple of reference sequences from NCBI
- 2. Excised out a chunk each
- 3. Took a DNA sequence (the 'wildtype insert') and inserted it into one of the chunks
- 4. Made copies of the wildtype insert and encoded messages as nucleotide variants with respect to the wildtype
- 5. Inserted one of the resulting variant inserts into each of the remaining reference sequences
- 6. Generated simulated reads from all new references at different coverages (metagenomics: non-uniform coverages)

Variant encoding

(This example encodes only one letter, the real messages are longer parts of sentences)

OLD WAY: Full length encoding (absolute)

A G C A G C C C
$$= 01001000 = H...$$

TODAY: variant encoding (relative)

14

What you get

dna-encode.pl	Perl script to encode/decode text to/ from DNA
sh_end_1.fastq.gz sh_end_2.fastq.gz	Paired end read data from the mixed references, fastq- format, 2x250bp from 1000+/-50bp fragments (inner distance 500+/-50bp)
lo_end_1.fastq.gz lo_end_2.fastq.gz	Paired end read data from the mixed references, fastq- format, 2x150bp from 5300+/-500bp fragments (inner distance 5000+/-500bp)

The decoder script

dna-encode.pl

NAME

dna-encode - encode and decode ASCII text into DNA

SYNOPSIS

dna-encode [OPTIONS]... [FILE]...

DESCRIPTION

This script encodes a string of characters first into big endian (network order) binary and then into DNA where zero become A or C and one becomes G or T.

This implementation is based on the algorithm described in George M. Church, Yuan Gao, and Sriram Kosuri. Next-Generation Digital Information Storage in DNA. Science 2012. DOI: 10.1126/science.1226355.

The decoder script

dna-encode.pl

OPTIONS

-d, --decode

Decode a DNA sequence into a message rather than the default of encoding a message into DNA.

-l, --little-endian

Encode/decode characters using little endian byte order rather than the default big endian byte order.

-r, --reverse-complement

Reverse complement the DNA after encoding (or before decoding).

--verbose

Output intermediate binary when encoding/decoding.

It's a *metagenomic* sample. Choose your tools accordingly.

After you identified an insert, you need to identify the insert *wildtype*. There are several ways to distinguish it from the variants. BLAST, consensus, pairwise similarities...

NCBI Blast may be unreliable due to the Government Shutdown. If yes, try to use the public BLAST server at EBI/EMBL (WU-BLAST).

Questions?

Are there any questions?

Otherwise, the link to the read data and the email address to send the answer to will follow next.

The data

Read data (~10mb) Can be obtained now at:

http://schatzlab.cshl.edu/btg2013.tgz

Answer (quote and author of quote) should be sent to:

beyondthegenome2013@gmail.com

Winner is announced today at about 4pm

