
The development of first-​generation sequencing 
technology in the late 1980s and 1990s was crucial 
for sequencing the first microbial, plant and animal 
genomes, including the initial sequencing of the human 
genome. The most important technology of this genera-
tion was automated Sanger sequencing instruments that 
could sequence hundreds of DNA molecules at a time. 
Several supporting biotechnologies were also developed 
for these early projects, including mate pairs, bacterial 
artificial chromosomes (BACs), optical mapping and 
other assays, to augment the relatively limited sequences 
that could be produced. In the mid-​to-late 2000s, high-​
throughput second-​generation sequencing technology 
quickly replaced first-​generation sequencing owing in 
large part to the substantially decreased costs needed 
for whole-​genome sequencing1. High-​throughput 
short-​read sequencing was the major development of 
this generation and was supplemented by several related 
biotechnologies, such as paired-​end sequencing, pooled 
fosmids and improved optical mapping technology. 
These second-​generation technologies have enabled 
the sequencing of many new genomes and widespread 
resequencing efforts to analyse genomic diversity2 
and pathogenic variants3, as well as extensive studies 
of transcription, gene regulation and epigenetics in 
many species4,5. However, although second-​generation 
sequencing has enabled population-​scale analysis of 
many plant and animal species, it also has important 
limitations, especially poor or ambiguous mapping 
to repetitive elements, limited ability to span indels or 
structural variants (SVs) and amplification artefacts 
during library construction; hence, the limitations of 

short-​read sequencing have left a substantial fraction 
of most genomes inaccessible and much of their true 
complexity hidden6.

Recently, several new genomic sequencing and 
mapping technologies (Table 1) have become availa-
ble that are increasingly being used to pierce into the 
remaining genomic dark matter of repetitive sequences, 
microsatellites and other complex structural variation. 
These platforms, characterized by long-​range single-​
molecule resolution, have taken on several forms 
using both new instrumentation and new protocols 
to improve older technology. One major advance has 
been the introduction of long-​read single-​molecule 
sequencing using single-​molecule real time (SMRT) 
sequencing from Pacific Biosciences (PacBio)7 or 
nanopore-​based sequencing from Oxford Nanopore 
Technologies8. Unlike second-​generation short-​read 
sequencing, which produces reads of a few hundred 
nucleotides at most, these technologies (sometimes 
called third-​generation sequencing) now routinely pro-
duce reads averaging around 10 kb in length, with many 
over 100 kb and the longest over 1 Mb. Distinct from 
these true long-​read platforms, the Chromium technol-
ogy from 10X Genomics employs genome partitioning 
and barcoding to generate linked reads that span tens 
to hundreds of thousands of bases9. As sequencing is 
ultimately performed on a high-​throughput second-​
generation sequencer (such as Illumina platforms), 
the linked reads can produce high-​quality genomes, 
including phased genomes, with only a modest cost 
increase over standard short-​read sequencing. Another 
advance has been to use Hi-​C and related chromatin 

Mate pairs
A molecular technique to 
generate a pair of sequencing 
reads separated by an 
approximately known distance. 
The typical separation distance 
for mate pairs is a few 
kilobases, as opposed to 
paired-​end sequencing, which 
separates the reads by a few 
hundred bases at most.

Optical mapping
A microscopy technique used 
to visualize the characteristics 
of DNA, especially the physical 
lengths or the position of 
fluorescent probes.
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crosslinking protocols to create very long-​range mate 
pair-​like data for second-​generation sequencing10–12. 
Although the genomic distance between an individual 
Hi-​C read pair is highly variable, the density of pairs 
spanning a given genomic distance is more predicta-
ble. Consequently, these libraries have a remarkable 
capability for phasing and scaffolding, allowing for 
nearly entire eukaryotic chromosomes to be resolved 
from end to end when combined with a high-​quality 
draft assembly13. Finally, new optical mapping instru-
ments from BioNano Genomics can rapidly fingerprint 
megabase segments of a genome, allowing high-​quality 
scaffolding and SV analysis at relatively low cost14. See 
the review by Goodwin et al.1 for an in-​depth discussion 
of these and related biotechnologies.

As impressive as these biotechnologies are, they 
cannot by themselves address any questions in genomics 
without bioinformatics analysis tools tailored for 
the new data types. Although the analysis needs of 
these new long-​range platforms are similar to those  
of second-​generation sequencing, most tools designed 
for second-​generation sequencing are inadequate for 
these new data types. Many of the core algorithmic 
techniques developed for earlier generations remain in 
use, such as dynamic programming for alignment or 
sequence graphs for de novo assembly, but an entirely 
new generation of bioinformatics tools has been created 
that leverage the unique features and overcome biases of 
the new sequencing and mapping platforms (Table 2). 
While seemingly mundane, increased read length has 
been a considerable problem in how aligners, assem-
blers, variant callers and other bioinformatics tools 
store or analyse the reads. Even the widely used BAM 
file format uses a limited number of bits for recording 
alignment information, and that is insufficient for some 
of the longest reads now being generated. This has led 
many programs to crash or corrupt their results, although 
recent pending proposals have been made on how to fix 

this within the core libraries (see Related links). Relatedly, 
software tools whose algorithmic complexity depends 
on the length of reads or span of the molecule, such as 
aligning a read or an optical map to a reference genome, 
have required new algorithmic ideas and compact data 
structures for estimating or accelerating the analysis. 
Even more challenging has been the unique error modes 
and data modalities: the single-​molecule sequencing 
approaches have higher error rates, whereas Hi-​C pairs, 
linked reads and optical mapping only sparsely sample 
the template molecules and suffer from their own unique 
biases. Finally, for many bioinformatics applications,  
the best results have come from combining multiple data 
types at once, and thus the software packages must be  
very flexible.

Nevertheless, new bioinformatics tools, combined 
with new biotechnologies, have already been used to 
improve our insights into many genomes. One of the 
most important applications has been to produce highly 
accurate de novo assemblies of hundreds of microbial, 
fungal, plant and animal genomes. Indeed, several  
‘reference’ genomes established using older technologies, 
such as the genomes of maize15, fruit fly16, mosquito12 
and many others, have been reassembled with the new 
technologies to fix errors and improve their resolution. 
These technologies are also increasingly being applied 
for resequencing analyses, especially to create detailed 
maps of structural variation and for phasing variants 
across essentially entire human chromosomes and 
other genomes. Notably, the new technologies have been 
used to fill in many of the gaps in the human reference 
genome that resisted more than 1 decade of scrutiny6,17, 
and studies have used these technologies to find SVs that 
are hard or impossible to detect using second-​generation 
sequencing18,19. Outside of DNA sequencing, these new 
technologies are increasingly used to study transcrip-
tomes and epigenomes, and thousands of novel isoforms 
and gene fusions20 have already been discovered, as well 

Table 1 | Long-​range sequencing and mapping platforms

Platform General characteristics and costs Major applications Bioinformatics challenges

PacBio SMRT 
sequencing

Single-​molecule long reads averaging 
~10 kb with some approaching 100 kb; 
several fold more expensive than short 
reads

De novo genome assembly , 
structural variant detection, gene 
isoform resolution and epigenetic 
modifications

Raw reads have high error rates 
dominated by false insertions; requires 
new alignment and error correction 
algorithms

Oxford Nanopore 
sequencing

Single-​molecule long reads averaging 
~10 kb with some >1 Mb; several fold 
more expensive than short reads

De novo genome assembly , 
structural variant detection, gene 
isoform resolution and epigenetic 
modifications

Raw reads have high error rates 
dominated by false deletions and 
homopolymer errors; requires new 
alignment and error correction 
algorithms

10X Genomics 
Chromium

Linked reads spanning ~100 kb 
derived from a collection of short-​read 
sequences; moderately more expensive 
than short reads

De novo genome assembly and 
scaffolding, phasing, detection of large 
structural variants (>10 kb) and single-​
cell gene expression

Sparse sequencing rather than true 
long reads; more complicated to 
align, with poorer resolution of locally 
repetitive sequences

Hi-​C-based analysis Pairs of short reads (<100 bp) 
formed from crosslinking chromatin 
interactions; moderately more 
expensive than short reads

Genome scaffolding and phasing Sparse sequencing with highly variable 
genomic distance between pairs (1 kb 
to 1 Mb or longer)

BioNano Genomics 
optical mapping

Optical mapping of long DNA 
molecules (~250 kb or longer) labelled 
with fluorescent probes; less expensive 
than short reads

Genome scaffolding and detection of 
large structural variants (>10 kb)

Limited algorithms to discover high-​
confidence alignment between an 
optical map and a sequence assembly

PacBio SMRT, Pacific Biosciences single-​molecule real time.

Indels
A type of DNA sequence 
variation marked by the 
insertion or deletion of 
nucleotides.

Structural variants
(SVs). DNA sequence variants 
that are 50 bp or larger, 
including insertions, deletions, 
inversions, duplications and 
translocations.

Linked reads
Also known as a read cloud. A 
set of barcoded short reads 
derived from the same DNA 
molecule and therefore highly 
localized in the genome.

Phased
Grouping together variants 
located on the same molecule, 
such as to identify variants 
from the maternal or the 
paternal genome in a diploid 
sample.

Scaffolding
The process of assembling 
sequences of DNA into a 
scaffold. A scaffold is similar to 
a contig but may contain gaps, 
typically represented as Ns in 
the sequence.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

www.nature.com/nrg

R e v i e w s



Table 2 | Bioinformatics methods for long-​range sequencing and mapping

Bioinformatics analysis Approach selected methods URL Refs

De novo genome assembly

Hybrid error correction Using short reads or short-​read 
assemblies to correct raw long 
reads

Nanocorr (I and O) https://github.com/jgurtowski/nanocorr 33

MaSuRCA (I and P) http://www.genome.umd.edu/masurca.html 35

PBcR (I and P) (also 
for just long reads)

http://www.cbcb.umd.edu/software/PBcR/ 32

Spades (I, P and O) http://bioinf.spbau.ru/spades 34

Self error correction Correct raw long reads using 
other raw long reads

FALCON-​sense (P) https://github.com/PacificBiosciences/FALCON 30

pbdagcon (P) https://github.com/PacificBiosciences/pbdagcon 36

Long-​read overlapping Find pairs of reads that align to 
each other

MHAP (P and O) https://github.com/marbl/MHAP 16

Minimap (P and O) https://github.com/lh3/minimap 45

DALIGNER (P and O) https://github.com/thegenemyers/DALIGNER 43

Contig assembly Arrange reads that overlap with 
each other to build a consensus 
sequence

Canu (P and O) https://github.com/marbl/canu 29

FALCON (P) https://github.com/PacificBiosciences/FALCON 29

Hinge (P) https://github.com/HingeAssembler/HINGE 135

MECAT (P and O) https://github.com/xiaochuanle/MECAT 136

Miniasm (O and P) https://github.com/lh3/miniasm 45

Spades (I, P and O) http://cab.spbu.ru/software/spades/ 34

Supernova (G) https://support.10xgenomics.com/
de-​novo-assembly/software/overview/welcome

52

HGAP (P) https://github.com/PacificBiosciences/
Bioinformatics-​Training/wiki/HGAP

36

Flye (P) https://github.com/fenderglass/Flye 137

MARVEL (P) https://github.com/schloi/MARVEL 37

Scaffolding Order and orient contigs into 
chromosome sequences

Architect (I) https://github.com/kuleshov/architect 53

ARCS (G) https://github.com/bcgsc/arcs 54

BioNano Access (B) https://bionanogenomics.com/support-​page/
bionano-​access/

FragScaff (H) https://sourceforge.net/projects/fragscaff/ 55

LINKS (P and O) https://github.com/warrenlr/LINKS 138

npScarf (O) https://github.com/mdcao/npScarf 139

RAILS (P and O) https://github.com/bcgsc/RAILS 59

SALSA (H) https://github.com/machinegun/SALSA 56

Gap filling Localized alignment and 
assembly to improve an existing 
assembly

PBJelly (P) https://sourceforge.net/p/pb-​jelly 58

RAILS and Cobbler (P 
and O)

https://github.com/bcgsc/RAILS 59

Polishing Refine the consensus sequence 
of a de novo assembly by a re-​
analysis of how the raw reads 
align

Arrow (A and P) http://www.pacb.com/

Nanopolish (A and O) https://github.com/jts/nanopolish 22

Pilon (A and I) https://github.com/broadinstitute/pilon 47

Quiver (A and P) https://github.com/PacificBiosciences/
GenomicConsensus

36

Racon (A , P and O) https://github.com/isovic/racon 140

Variant detection

Assembly alignment Alignment of assembly to  
a reference or another  
assembly

L AST (A and P) http://last.cbrc.jp/ 80

MUMmer (A) http://mummer.sourceforge.net/ 79

Assembly-​based SV 
detection

Scan alignments to find 
differences relative to a 
reference genome or another 
assembly

AsmVar (A) https://github.com/bioinformatics-​centre/ 
AsmVar

66

Assemblytics (A) http://assemblytics.com/ 81
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Bioinformatics analysis Approach selected methods URL Refs

Long-​read mapping Seed-​and-extend method using 
clusters of short seeds

BL ASR (P) https://github.com/PacificBiosciences/blasr 75

BWA-​MEM (O and P) http://bio-​bwa.sourceforge.net/ 76

DALIGNER (P) https://github.com/thegenemyers/DALIGNER 43

GraphMap (O and P) https://github.com/isovic/graphmap 141

Kart (O and P) https://github.com/hsinnan75/Kart 142

L ASMSA (O and P) https://github.com/hitbc/L AMSA 143

L AST (O and P) http://last.cbrc.jp/ 80

Minimap2 (O and P) https://github.com/lh3/minimap 77

NGMLR (O and P) https://github.com/philres/nextgenmap-​lr 73

Linked-​read mapping Two-​pass strategy to resolve 
ambiguous mappings over 
barcode information

Lariat (G) (also 
included in 
LongRanger (G))

https://github.com/10XGenomics/lariat 9

SV calling Investigating split-​read and 
within-​read alignments and 
coverage

BioNano Access (B) https://bionanogenomics.com/support-​page/
bionano-​access/

GROC-​SVs (G) https://github.com/grocsvs/grocsvs 19

HiCup (H) https://www.bioinformatics.babraham.ac.uk/
projects/hicup/

74

LongRanger (G) https://support.10xgenomics.com/genome-​exome/
software/pipelines/latest/what-​is-long-​ranger

NAIBR (G) https://github.com/raphael-​group/NAIBR 144

PBHoney (P) https://sourceforge.net/projects/pb-​jelly/ 71

SMRT-​SV (P) https://github.com/EichlerLab/pacbio_variant_caller 6

Sniffles (O and P) https://github.com/fritzsedlazeck/Sniffles 73

SV consolidation Combines results from multiple 
callers to increase sensitivity and 
reduce false-​positive calls

MetaSV https://github.com/bioinform/metasv 82

SURVIVOR https://github.com/fritzsedlazeck/SURVIVOR 64

Variant phasing

Assembly-​based Recognize and partition 
heterozygous variants during a 
de novo assembly

FALCON-​Unzip (P) https://github.com/PacificBiosciences/FALCON 30

Supernova (G) https://support.10xgenomics.com/
de-​novo-assembly/software/overview/welcome

52

Mapping-​based Partition the aligned reads into 
two sets such that the reads 
within a set strongly agree with 
each other

HapCut2 (I, P, O 
and H)

https://github.com/vibansal/HapCUT2 13

LongRanger (G) https://support.10xgenomics.com/genome-​exome/
software/pipelines/latest/what-​is-long-​ranger

WhatsHap (I, O and P) https://whatshap.readthedocs.io/en/latest/ 145

RNA-​seq analysis

Quality control Detection of artefacts in isoform 
identification

SQANTI (O and P) https://bitbucket.org/ConesaLab/sqanti 106

Isoform analysis Split-​read alignments or de novo 
assembly to find isoforms

TAPIS (P) https://bitbucket.org/comp_bio/tapis 100

ToFU (P) https://github.com/PacificBiosciences/
IsoSeq_SA3nUP

105

BL AT (O) http://genome.ucsc.edu/FAQ/FAQblat#blat3 146

Gmap (P) http://research-​pub.gene.com/gmap 147

Single-​cell quantification Counts the number of barcoded 
reads aligned to each gene

CellRanger (G) https://support.10xgenomics.com/single-​
cell-gene-​expression/software/pipelines/latest/
what-​is-cell-​ranger

109

Methylation analysis

Methylation analysis Re-​analyse raw signal data to 
find pauses or intensity changes

BaseMods (P) https://github.com/PacificBiosciences/
Bioinformatics-​Training/tree/master/basemods

112

Nanopolish (O) https://github.com/jts/nanopolish 22

SignalAlign (O) https://github.com/ArtRand/signalAlign 21

A , assembly-​based; B, BioNano Genomics; G, 10X Genomics; H, Hi-​C; I, Illumina; O, Oxford Nanopore; P, PacBio; RNA-​seq, RNA sequencing; SV, structural variant.

Table 2 (cont.) | Bioinformatics methods for long-​range sequencing and mapping
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as more detailed maps of DNA methylation in pathogens 
and human disease21,22.

In this article, we discuss the most widely used 
bioinformatics approaches for analysing these new 
technologies to address several problems in genomics. 
We highlight both the strengths and weaknesses of the 
tools for analysing these new data types and conclude 
with a discussion of future needs.

De novo genome assembly
Analogous to solving a jigsaw puzzle, a genome is assem-
bled by comparing the sequences of the reads to each 
other so that overlapping reads can be locked together 
into contigs23 (Fig. 1). High-​quality assemblies are char-
acterized by high contiguity (typically measured by 
average or N50 contig size), high completeness (typically 
measured by the fraction of the genes or fraction of 
the genome represented) and correctness (typically 
measured by both base-​level accuracy and structural 
accuracy)24,25. A high-​quality assembly can be transform-
ative to studying a species: the genome can be annotated  
to identify genes, regulatory sequences and other 
important features; it can be used for mapping rese-
quencing data or functional data sets; cis-​regulation and  
trans-​regulation relationships can be more easily 
identified; topologically associating domains (TADs), 
synteny blocks and other large chromosome features can 
be studied; and many other analyses can take place that 
would be otherwise difficult or impossible.

Producing a high-​quality assembly is challenging 
for many biological and technical reasons, especially 
repetitive or heterozygous sequences, sequencing errors, 
chimeric reads, insufficient read length or insufficient 
or biased coverage26. Of these factors, one of the most 
prominent and challenging is repetitive sequences. 
Much like how repeated elements in a jigsaw puzzle are 
the hardest to resolve, such as the blue sky in a landscape, 
repeats are the hardest sequences to assemble. This is 
because unresolved repeats confuse how the assem-
bled sequence should be joined together and cause the 
assembler to end the contig. Consequently, when using 
reads shorter than the common repeats in the genome, 
the assembly will be ‘shattered’ into many small con-
tigs with a small N50 size. In more adverse conditions, 
repeats can cause misassembly errors where what should 
be distant regions of the genome are incorrectly assem-
bled together25. Consequently, de novo assemblies com-
posed of only second-​generation sequencing can lack 
or misrepresent large portions of the genome, may be 
fragmented and missing important genes and can lack 
sufficient robustness to study overall chromosome 
architecture. In some cases, the assembled sequences 
have been substantially shorter than the average gene 
size, rendering the assembled sequence much less useful 
than earlier reference genomes27,28.

Assembly algorithm development for long-​range 
sequencing and mapping has been a very active 
research field. These efforts have begun a resurgence of 
reference-​quality genomes with contig sizes measured in 
megabases instead of mere kilobases that are common 
for second-​generation attempts16,29–31. This development 
is chiefly due to the new bioinformatics software that 

Contigs
Contiguously assembled 
sequences of DNA.

N50
A weighted average length; 
specifically, the N50 length is 
the length such that 50% of 
the genome has been 
assembled into contig or 
scaffold sequences of this 
length or longer.

Cis-​regulation
Any molecular interaction that 
regulates the transcription of 
nearby genes on the same 
DNA molecule, such as the role 
of a gene promoter.

Trans-​regulation
Any molecular interaction that 
regulates the transcription of 
genes on a different DNA 
molecule, such as a 
transcription factor regulating 
both alleles of a target gene or 
genes.

Topologically associating 
domains
(TADs). Regions of the genome 
that are enriched for 
interactions with other 
elements within the same 
domain.

Synteny blocks
Genomic regions that are 
conserved among multiple 
species.

f  Scaffold construction

e  Contig construction

d  String graph
     construction

c  Pairwise read overlaps

b  DNA sequencing

a  Sample collection

…AGCCTAGACACAGGATGCGCGAGT
GGATGCGCGAGTCGCATACCGT…

Fig. 1 | De novo genome assembly. a | A sample  
of cells are collected from the individual. b | The DNA  
is extracted and sheared into a library of molecules  
for sequencing. c | The read sequences are compared  
to each other to find overlaps where the end of one  
read matches the beginning of another. d | An overlap 
graph or string graph is formed between reads  
(nodes shown as circles) that overlap (edges shown  
as arrows between the circles). e | The graph is 
compacted to form the initial contigs ending at 
repetitive sequences, heterozygous bases or other 
complicated regions. f | The contigs are ordered and 
oriented using other long-​range information (such as 
linked reads, Hi-​C or optical maps) into a scaffold, 
although some portions may remain as unresolved ‘N’ 
sequences. Here, the brown repetitive sequence is left 
out of the scaffold, leaving gaps between the other 
contigs. Figure is adapted from Ref.132, BioMed Central, 
CC-​BY-4.0 (https://creativecommons.org/licenses/
by/4.0/).
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can effectively use these technologies to span propor-
tionally more of the repeats and heterozygous sequences 
that are present in a genome. Much of the algorithmic 
research has been focused around long reads, especially 
to overcome the high error rates, although linked reads, 
chromatin-​based sequencing data and optical map 
data can also be assembled, especially to improve the 
scaffolding of the assembly (see below).

Because of their high frequency of errors and 
increased read lengths, both PacBio and Oxford 
Nanopore sequencing require specialized assembly 
algorithms, including new methods for error correction, 
overlapping, contig formation and polishing the assem-
bled sequences. Hybrid error correction methods, such 
as PBcR32, Nanocorr33, Spades34 and MaSuRCA35, use 
short-​read data to error correct the long reads before 
assembly and are especially effective when a limited 
amount of long-​read coverage is available (typically 
below ~30× coverage)32,33. Alternatively, self-​correction 
approaches used by HGAP36, PBcR32, Canu28, MARVEL37 
or FALCON29 error correct the long reads by aligning 
them to each other and are often beneficial, owing to 
the more reliable alignments between the long reads 
if enough coverage is available. With enough coverage 
available, self-​correction often leads to higher accuracy 
of the error-​corrected long reads and less fragmentation 
of the long-​read sequences than when using short reads. 
This is because the alignment of short reads to (uncor-
rected) long reads can be unreliable, especially within 
repetitive sequences or because of biases in short-​read 
coverage (for example, GC content). Deep coverage is 
also useful because the read-​length distribution for long 
reads is often log normal, so increasing the overall cov-
erage increases the availability of the longest reads. The 
ultra-​long reads are the most useful for resolving repeats 
or heterozygosity, and their use improves contig sizes 
and assembly quality the most.

One of the most computationally expensive phases 
of genome assembly is during overlapping, where the  
sequence of every read must be compared with  
the sequence of every other read, using an O(n2) algo-
rithm if performed naively. This quickly becomes a 
computationally expensive operation for large genomes 
with millions to billions of sequencing reads, so various 
k-​mer techniques and other seeding techniques have 
been developed to identify candidate pairs of reads that 
are likely to overlap with high similarity. However, the 
techniques developed for Sanger or Illumina sequencing 
are generally insufficient for overlapping and assembling 
long reads with high error rates, as the k-​mers that can 
be used must be very short to avoid sequencing errors. 
Addressing the poor runtime, Canu uses the MHAP 
overlap algorithm16 to quickly overlap raw PacBio or 
Oxford Nanopore reads. This work replaces the exact, 
but slow, dynamic programming algorithm for comput-
ing the alignment between a pair of reads with a much 
faster approximation algorithm based on locality sensi-
tive hashing38. With it, the sequence similarity between 
a pair of reads is estimated on the basis of the percentage 
of specifically chosen k-​mers shared between the read 
sequences. This algorithm, originally developed for 
identifying highly similar webpages across the entire 

Internet, scales to large numbers of long reads and 
improved the runtime by several orders of magnitude. 
See Chu et al.39 for a more detailed discussion of read 
overlap algorithms.

Afterwards, within Canu, the error-​corrected long 
reads are assembled, building on the design of the Celera 
Assembler40–42, in which the overlaps between the reads 
are encoded in an overlap graph containing nodes and 
edges to represent the relationships between the overlap-
ping reads. A series of graph transformations are applied 
to the graph, including removing contained reads and 
any transitive overlaps, to identify and reconstruct the 
sequences of the genome that can be unambiguously 
assembled. With reads averaging around 10 kb, the ini-
tial contig sequences can span millions of nucleotides 
and typically end because of ambiguity at repetitive 
sequences, unresolved heterozygosity, lack of coverage 
or unresolved sequencing error.

The FALCON assembler and the new MARVEL 
assembler for PacBio reads operate similarly to Canu, 
although they both use DALIGNER43 instead of MHAP 
to compute the overlaps between reads for error correc-
tion and assembly, and form a string graph44 rather than 
an overlap graph. Like the original Celera Assembler, 
DALIGNER uses dynamic programming to compute 
the overlaps, although DALIGNER uses a heavily opti-
mized banded analysis and k-​mer screening to accelerate 
the computation. Unique to FALCON, it also includes a 
module called FALCON-​Unzip that runs after the ini-
tial contigs are assembled to create a phased assembly 
for diploid samples. With it, heterozygous variants con-
tained within the maternal or paternal chromosomes 
are separated, and the sequences for the homologous 
chromosomes are individually reported (also see phas-
ing below)30. Another active area of research has been 
to develop methods to assemble a genome from long 
reads without any error correction. One such assem-
bler, Miniasm and the associated Minimap overlap 
algorithm45, is more than one order of magnitude faster 
than Canu or FALCON, although the resulting sequence 
accuracy is poor, making a final polishing step essential.

After assembling the contigs from long reads, polish-
ing algorithms correct residual errors in the assembled 
consensus. These include Quiver36 or Arrow for PacBio 
(see Related links), Nanopolish46 for Oxford Nanopore or 
Pilon for polishing long-​read assemblies with additional 
Illumina reads47. Unlike base calling, which processes one 
read at a time, or pre-​assembly error correction, which 
uses a rudimentary alignment of reads, post-​assembly 
error correction is much more effective because it  
can evaluate the alignments and raw signal data of all 
the reads that confidently align to a given region at the  
same time, an idea originally developed for Sanger 
sequencing48. This makes it possible to assemble highly 
contiguous sequences with 99.9% accuracy or greater, 
even though the initial sequencing reads may have 20% 
sequencing errors or worse. The remaining residual 
errors are enriched in homopolymer sequences and other 
repetitive sequences that are difficult to align30. Hybrid 
polishing using short-​read data is effective over much of 
the genome, although it is limited in repetitive sequences, 
where short reads cannot be confidently aligned31.  
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Additional improvements are also needed to develop 
polishing methods for diploid or higher ploidy genomes, 
where true heterozygous variants are obscured by 
sequencing errors. Finally, research is also needed to 
develop more accurate base calling software to minimize 
the errors in the reads before any assembly. Substantial 
improvements have already been made for Oxford 
Nanopore base calling in the past few years, and today’s 
leading approaches can achieve >90% average accuracy 
using recurrent neural net approaches49 and other sta-
tistical learning techniques50. Homopolymer sequences 
and other low-​complexity sequences remain challeng-
ing to accurately sequence31, but improved base calling 
software and further improvements to the reagents and 
sensors are expected to further improve the raw accuracy 
rate to 95% or higher within the next few years.

Chromosome scaffolding and gap filling
Scaffolds, like contigs, represent assembled portions of a 
chromosome. They are formed by ordering and orienting 
contigs along the chromosomes using genetic markers, 
optical maps, linked reads or other long-​range sequenc-
ing information (Fig. 1). Scaffolds typically span much 
longer distances than contigs, including entire chromo-
somes in some cases. Unlike contigs, scaffold sequences 
can contain gap characters (Ns) where certain regions 
remain unresolved with potentially unknown gap sizes26. 
Returning to the jigsaw puzzle analogy, contigs repre-
sent the fully resolved portions of the puzzle, whereas 
scaffolds can have ‘holes’ where some of the pieces are 
missing. The major bioinformatics challenge to accurate 
scaffolding is to determine the correct order and orien-
tation of all the contigs so that the contigs are congruent 
with the supporting data (long reads, linked reads, mates 
and/or optical maps). As with contig assembly, repeats 
and heterozygous SVs are the most challenging regions 
to resolve, as the supporting data may suggest multiple 
possible configurations.

Scaffolding algorithms commonly use either ‘greedy’ 
approaches that iteratively join together contigs with the 
strongest linking support or a ‘global optimization’ that 
tries to best satisfy all of the linking information at once. 
Scaffolding using optical map data is relatively straightfor-
ward as the optical data can be compared with an in silico 
restriction map of the sequence contigs51. Scaffolders using 
linked reads, such as Supernova52 (which also includes an 
integrated short-​read assembler), Architect53, ARCS54 or 
fragScaff (which is also used for Hi-​C data)55, look for 
pairs of contigs that are bridged by multiple linked reads, 
that is, reads labelled with multiple barcodes align to a 
pair of contigs. One complication of this approach is that a 
barcode used for labelling a long molecule may be reused 
to label different molecules, creating conflicts in which 
contigs should be adjacent to each other. Fortunately, 
this can often be resolved by requiring multiple linked 
reads (multiple barcodes) to be shared before scaffolding 
the contigs together. Scaffolding using Hi-​C is the most 
challenging, as the genomic distance between a given Hi-​
C-based read pair is highly variable and may span a few 
kilobases to megabases without any direct indication of 
the true distance11,12,56. Fortunately, the density of pairs 
linking two regions is more predictable, allowing for 

neighbouring contigs to be more reliably identified as 
having the most pairs between them, although inversion 
errors are common and repetitive sequences can 
artificially inflate the number of pairs.

A combination of sequencing and mapping data 
often leads to improved assemblies and is potentially 
more cost effective than sequencing alone. For example, 
the goat57 and human56 genomes were assembled using 
a combination of long reads and Hi-​C-based data have 
remarkably high quality with long contigs (contig N50 
of 18.7 Mb and 26.8 Mb, respectively), chromosome-​
length scaffolds (scaffold N50 of 87 Mb and 60.0 Mb) 
and nearly 100% sequence fidelity. Alternatively, by 
carefully modelling and leveraging the linked reads data 
characteristics, the 10X Genomics Supernova assembler 
has also proved very effective using only linked reads, 
with scaffold lengths among the best available for any 
human genome (scaffold N50 sizes of 15 Mb to 18 Mb)52, 
although the contig sizes remain relatively short (contig 
N50 sizes of 106 kb to 123 kb). Supernova further pro-
duces a phased genome assembly, often with phase block 
lengths that are considerably longer than those obtained 
using FALCON-​Unzip with PacBio reads.

A final approach is to use low-​coverage long reads for 
scaffolding or filling gaps within an existing assembly 
using tools such as PBJelly or Cobbler58,59. In many cases, 
gap filling makes it possible to turn sequence scaffolds 
(with Ns) into contigs (without any Ns). Although the 
consensus accuracy from low-​coverage long reads will 
be lower in the gap-​filled regions, it is often more useful 
to have a low-​fidelity sequence than totally unresolved N 
characters. The main bioinformatics challenge is to avoid 
creating new misassemblies in the gaps, especially as the 
flanking contigs surrounding a gap will frequently end 
because of complex repeats.

One of the largest obstacles for chromosome scaf-
folding is obtaining a sufficiently high-​quality contig 
assembly before scaffolding (for example, at least 50 kb to 
500 kb contig N50 depending on the scaffolding technol-
ogy): for BioNano Genomics, this is required so that each 
contig has several restriction sites to enable the optical 
map to be confidently aligned, and for 10X Genomics 
linked reads or Hi-​C data, this is needed to detangle the 
initial linked read or chromatin mate-​pair alignment 
information, respectively. The success of these tech-
nologies is also very sensitive to any biases in the data. 
BioNano Genomics map data are limited by fragile sites14, 
and the Dovetail cHiCago protocol was designed to fil-
ter out the biological noise of chromatin domains from 
the desired technical signal of locality10. Hi-​C-based 
approaches also often have high rates of inversion errors, 
and both Hi-​C-based and 10X Genomics will also be 
biased by the limitations of Illumina sequencing, espe-
cially reduced coverage in regions with extreme GC 
content. Errors in the initial contigs can also limit scaf-
folding, and the newest approaches, such as SALSA56 or 
the 3D-​DNA pipeline12, first try to resolve contig errors 
before scaffolding. Finally, and most importantly, scaf-
folding a chromosome has less information than fully 
sequencing a chromosome, and thus important biolog-
ical sequences can be missed in the gaps between the 
contigs and the gap sizes may be poorly estimated.

Fragile sites
Regions of the DNA molecule 
that are prone to physical 
shearing, especially when 
multiple nicking sites targeted 
by a nicking enzyme are 
located in close proximity.
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Structural variation identification and analysis
SVs account for the largest number of diverged base pairs 
across human genomes60–63 and have been shown to have 
substantial impacts on evolution (such as gene losses 
and transposon activity), genomic disorders (such as 
cancer and autism), gene regulation (such as gene dupli-
cations or rearrangements of transcription factors) and 
other phenotypes in many species (such as mating and 
intrinsic reproductive isolation)64. SVs are characterized 
as 50 bp or larger events that fall into one of five major 
categories: deletions, duplications, insertions, inversions 
and translocations. Copy number variants (CNVs) are 
an important subtype of SVs formed by genomic dele-
tions and duplications that have been implicated in sev-
eral human diseases65. SVs can also be nested or chained 
together into larger regions of variation, especially in cases 
of chromothripsis or chromoplexy in cancer66.

Our understanding of SVs has been limited by the 
technology at hand. The earliest reports, based on cytoge-
netics and other low-​resolution approaches, suggested 
that SVs were rare and played a minor role in human 
variation67. However, in 2004, Sebat et al. used microar-
rays to discover that CNVs between human genomes 
are surprisingly frequent and contribute a large number 
of variable bases within a person68. Today, SV analysis 
is most commonly based on short reads and routinely 
discovers copy number alterations in individuals whether 
healthy or with disease. Nevertheless, detecting SVs from 
short reads often suffers from low sensitivity (30–70%) 
and up to 85% false discovery17,69–72. Thus, many projects 
elect to focus on certain subtypes of SVs (for example, 
just CNVs or just deletions) or opt to not call SVs at all. 
This is done to reduce the false discovery rate but also 
risks missing important variations.

Most recently, the new sequencing and mapping 
technologies have been shown to improve sensitiv-
ity and reduce false discovery while inferring all SV 
types. Using the newest approaches, several studies 
have reported around 20,000 SVs per human genome, 
most of which could not be detected using short-​read 
sequencing6,17,73. This development has started to widen 
our knowledge of the emergence, complexity and impact 
of SVs owing to higher resolution and long-​range infor-
mation. Importantly, the longer reads and longer spans 
allow detection of SVs within repetitive elements and 
segmental duplications, which are otherwise inaccessible 
using short reads. For example, these technologies have 
enabled the closing of many of the gaps in the human 
reference genome, and it was found that the majority of 
gaps (78%) carried long runs of degenerate short tan-
dem repeats embedded within (G + C)-rich genomic 
regions that are difficult to sequence using short-​read 
sequencing6. Similar to de novo assembly, the main bio-
informatics challenges centre around accurate alignment 
of the data, especially to overcome errors and to avoid 
misalignments induced by repetitive sequences.

Two main approaches have been used for SV 
discovery: a mapping-​based approach or a de novo 
assembly-​based approach. In the first approach, SVs 
are detected on the basis of the direct mapping of the 
reads or other data from a sample to a reference genome 
using methods such as LongRanger (10X Genomics), 

GROC-​SVs (10X Genomics)19, PBHoney (PacBio)71, 
SMRT-​SV (PacBio)6, Sniffles (PacBio and Oxford 
Nanopore)73 or HiCup (Hi-​C)74 (Fig. 2). The most suc-
cessful methods use multiple sources of information to 
predict the location and type of SV, including the follow-
ing: within-​alignment analysis, to detect indels up to a 
few kilobases in size; split-​read alignments (where two 
or more regions of a read are aligned to different regions) 
to detect larger indels and other types of SVs; paired-​
end or linked-​read alignments to indicate SVs based on 
the abnormal distance or orientation of the segments or 
read pairs; and alterations in alignment coverage, which 
can identify CNVs but not rearrangements. Several 
technology-​specific algorithms have been introduced 
to address the specific error models and characteristics 
of the data, including BLASR (PacBio)75, BWA-​MEM 
(PacBio and Oxford Nanopore)76, Minimap2 (PacBio 
and Oxford Nanopore)77, NGMLR (PacBio and Oxford 
Nanopore)73 or Lariat (10X Genomics)9, which is itself 
based on the Random Field Aligner (RFA)78 and uses 
BWA-​MEM. Another major challenge is that novel 
sequences in the sample will not map well or at all in the 
reference, making it difficult to resolve large insertions. 
Nevertheless, the main strengths of a mapping approach 
are that it requires the least amount of coverage 
(minimally only ~15×), is able to identify heterozygous 
SVs and is more robust to genomic amplifications, 
such as highly amplified oncogenes, which tend to  
assemble poorly73.

The second main approach for detecting SVs is 
de novo assembly followed by whole-​genome align-
ment between the samples or the reference genome. 
The advantage of this approach is that in principle it can 
reveal the full genome of each sample, including any 
sample-​specific sequences or large insertions that can 
be harder to resolve by read mapping. De novo assem-
bled contigs also provide strong evidence that no SVs, 
especially homozygous SVs, have gone undetected. 
Commonly used methods to perform the whole-​genome 
alignment include MUMmer79 or LAST80, followed by 
methods such as AsmVar66 or Assemblytics81 to scan the 
alignments for SVs.

The accuracy of detecting SVs within an assem-
bly strongly depends on the quality of the de novo 
assembly, the quality of the reference and the qual-
ity of the alignments. Repetitive sequences are the 
largest obstacle and can mask or confuse where SVs 
occur, although longer contigs can generally be more  
robustly aligned than short contigs. Another impor-
tant consideration is the increased costs required for 
SV detection based on de novo assembly relative to 
the direct mapping of reads to a reference, both in the 
increased sequence coverage needed and the more 
computationally demanding methods that are applied. 
Furthermore, although new methods are starting to 
become available for diploid genome assembly, detect-
ing heterozygous variants or analysis of polyploid regions 
(for example, in plant or cancer genomes) remains 
challenging. Heterozygous variants will often be left 
out of an assembly or will be represented only as alter-
native contigs. This is often based on the interpreta-
tion of the de novo assembler and can lead to artefacts 

Nested
Two or more adjacent or even 
overlapping variants in the 
same region of the genome, 
such as a deletion within the 
middle of a larger inverted 
sequence.

Chromothripsis
A phenomenon by which many 
chromosomal rearrangements 
occur in a single event in a 
localized region of the genome. 
Also called chromosome 
shattering.

Chromoplexy
A complex mutation where 
genetic material from multiple 
chromosomes is broken and 
ligated to each other in a new 
configuration, especially in 
cancer.

Polyploid
Cells and organisms that 
contain more than two paired 
(homologous) sets of 
chromosomes.
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when the algorithm fails to detect the heterozygosity 
because of complicated repeat structure or insufficient 
read coverage.

A specialized form of de novo assembly-​based SV 
detection is based on optical mapping data51. The pat-
terns of restriction sites identified along each molecule 

can be de novo assembled into more complete optical 
maps, analogous to a de novo sequence assembly. SVs 
in the sample can then be detected by comparing the 
assembled map of the sample with an in silico restriction 
map of the reference genome. This can be a relatively 
inexpensive way to detect SVs across the genome, but 
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Fig. 2 | Structural variant detection with long-​read sequencing. Structural 
variant (SV) types as illustrated in the Integrative Genomics Viewer (IGV)83 
based on Illumina reads (using BWA-​MEM), Pacific Biosciences reads (using 
NGMLR) and Oxford Nanopore reads (using NGMLR) for the NA12878 human 
genome73. The black DNA molecule arrows show the canonical reference 
genome, and the grey connection arrows show the breakpoints of the SVs. 
The coloured regions of the reads highlight the discordant pairs or split-​read 
alignments that are informative for identifying the SVs. Deletions are the 

easiest to identify as regions with reduced alignment coverage. Insertions can 
be recognized using Illumina data based on paired-​end alignments, especially 
where one read in the pair is not mapped (shown by coloured boxes). Insertions 
with long reads are more straightforward to identify , as the alignment can 
extend through the inserted sequence (indicated as a small purple box). 
Inversions, duplications and translocations are recognized as pairs that have 
incorrect orientations and/or split-​read alignments to different locations in 
the genome or to different strands (shown as different coloured boxes).
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the approach is constrained by the spacing of the restric-
tion sites and a general inability to determine the specific 
sequence of the SVs. The shorter the distance between 
the markers is, the higher the precision and resolution 
of SVs. For example, optical maps produced by BioNano 
Genomics using a 7 bp recognition site are typically capa-
ble of detecting SVs that are 10 kb or larger14. However, 
as the optical maps provide a sparse representation of 
the genome, currently available algorithms, such as 
the BioNano Access algorithm, have limited accuracy 
when two or more SVs are close to each other (both are 
located within a given pair of digest sites), as the signals 
will get mixed together so that only their net effect can  
be measured.

It is important to highlight that each strategy for 
detecting SVs has unique advantages and disadvan-
tages. There are two main points to consider. First is 
coverage versus costs: de novo assembly-​based methods 
typically require much higher coverage (~50× or more), 
whereas mapping-​based methods can detect most of the 
SVs in a sample using lower coverage (~15× coverage), 
including heterozygous SVs. Consequently, for the same 
sequencing cost, about three times as many samples can 
be analysed using a mapping approach than a de novo 
assembly approach. The second consideration is the 
complexity of the sample: although haploid genomes 
are relatively straightforward to analyse with de novo 
assembly or optical mapping, these approaches are more 
challenging in regions of high copy number. Conversely, 
if there isn’t a high-​quality reference of a closely related 
species available or the genome has been highly rear-
ranged or mutated compared with the reference, de novo 
assembly may be necessary to capture the sequences that 
are specific to the new sample. Finally, recent reports have 
shown that SVs in the human genome are enriched in 
segmental duplications and other repetitive elements6,73. 
As these are the most difficult sequences to assemble or 
align, it is essential that the bioinformatics tools carefully 
evaluate the evidence to make accurate calls.

There are multiple challenges left to be addressed 
for the high-​quality detection and analysis of SVs. As 
the different technologies and approaches have differ-
ent strengths and weaknesses, it is important to filter 
and combine results across data types and samples. 
One strategy is to use a consensus approach to improve 
sensitivity (for example, MetaSV82) or limit the false 
discovery rate (for example, SURVIVOR64). It often 
helps to visualize the SVs to better understand the 
limitations and accuracy of the approach. The widely 
used Integrative Genomics Viewer (IGV)83 program 
was recently improved to better support long or linked 
reads, and Ribbon84 can visualize long reads or assem-
blies mapped to multiple chromosomes. Another active 
line of research is to develop hybrid strategies that use 
read mapping to localize the data and then use de novo 
assembly to resolve the specific sequence of the SV85. 
Overall, more-​sensitive methods are needed to tackle 
remaining problems arising from sequencing or PCR 
artefacts, de novo assembly or alignment artefacts or 
regions that are simply hard to assess owing to their 
diversity. Finally, unlike single nucleotide polymorphisms 
(SNPs), which have databases of hundreds of millions 

of known variants, SVs do not have extensive databases 
available. This makes it difficult to determine whether 
an observed SV is common in the general population, 
which has proved to be one of the most powerful signals 
for determining whether a variant is pathogenic or 
carries some other important function86.

Haplotype phasing and allele-​specific analysis
Many eukaryotic genomes, including most higher plant 
and animal species, have more than one copy of each 
chromosome. For example, a typical human genome 
varies from the reference genome at about 4.1 to  
5.0 million sites, and most variants are heterozygous, 
with the density of heterozygous sites across the 
genome depending on the relatedness and ethnic back-
ground of the parents2. Distinguishing the maternal 
versus paternal haplotypes allows the recognition of 
compound heterozygous versus hemizygous mutations, the 
analysis of allele-​specific expression and occupancy by 
DNA-​binding proteins, the determination of the parent 
of origin for de novo mutations, the detection of sub-
clones in tumours and other evolutionary and medical 
applications87,88.

Most variant callers89–91 developed for second-​
generation sequencing report unphased variants 
(also called genotypes), although a few approaches 
are available for phasing variants into haplotypes88. 
The most reliable strategy is to sequence or genotype  
the individual’s parents or a larger pedigree and directly 
determine the parental origin of each variant, except 
at those positions where both parents share the same 
variant. However, this potentially increases the cost of 
a study, and the parents may not be available. Another 
popular method is to use statistical inference from large 
collections of genomes to impute the haplotypes87. This 
is very robust for common variants but is less reliable for 
rare variants and offers no resolution for private mutations 
or somatic mutations.

Consequently, there is great interest to derive haplo-
types using only sequencing reads from one individual. 
The key concept is that heterozygous variants can be 
phased when reads span across them (Fig. 3a). Thus, the 
methods are limited by read length, sequencing errors 
and fluctuation in coverage that can cause false variants 
to be introduced or true heterozygous variants to be 
missed. Minimum error correction (MEC) is a widely 
used formalism for computing the optimal phasing on 
the basis of how the reads are aligned to a reference 
genome92. Conceptually, the haplotypes within a diploid 
chromosome are determined by finding a partitioning of 
the reads into two sets, one for each haplotype, such that 
the reads within each partition have a minimal number 
of errors with respect to a consensus haplotype. Exactly 
solving this problem is generally computationally 
intractable as it is NP-​hard82, although WhatsHap83 pro-
vides a dynamic programming exact solution to MEC as 
well as its weighted extension but can efficiently process 
only at most 15× coverage. Other heuristic approaches, 
such as HapCut2 (Ref.13) and LongRanger9, adjust which 
reads are in which partition by optimizing a maximum-​
likelihood objective. Concomitant with de novo assem-
bly, FALCON-​Unzip30 uses a greedy approach, whereby 

Polymorphisms
Variants observed in the 
genome that are present to 
some appreciable degree 
within a population (for 
example, >1%).

Compound heterozygous
Two different mutant alleles at 
a particular gene locus, one on 
each chromosome of a pair.

Hemizygous mutations
Two or more heterozygous 
mutations, especially  
loss-​of-function mutations, 
occurring on the same 
chromosome so that they 
disrupt one copy of the gene 
but leave one functional copy.

Private mutations
Rare variants observed only 
within a single person or family.

NP-​hard
In computational complexity 
theory, this is a class of 
problems in which no fast 
solutions are known to exist.
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reads are iteratively added to the partition with the most 
similar consensus haplotype and then used to update the 
haplotype, resulting in the separation of the individual 
diploid chromosomes. This process works best when 
there are several heterozygous SNPs or SVs spanned 
by a single long read, but the high error rate of PacBio 
sequencing makes it less reliable for phasing individual 
pairs of SNPs.

To compare the quality of different haplotype assem-
blies or haplotype phase blocks, the phase block N50 
length statistic is widely used. However, this alone can 
be misleading, as overlapping long blocks that each 
contain only a few variants would have a high N50. The 
metrics S50 and AN50 have been proposed to reflect  
the contiguity of haplotype assemblies93: S50 measures the  
number of SNPs contained in the block instead of  
the length in base pairs, and AN50 (adjusted N50) com-
bines the length and the fraction of included heterozygous 
variants to reflect the phasing quality.

With sufficiently deep coverage available, the phase 
block size is directly related to the span of each read or 
data type (Fig. 3b,c). For example, in the human genome, 
where heterozygous variants occur on average every 1 kb 

to 1.5 kb, but also includes large spans that are void of 
heterozygosity, the phase block N50 size derived from 
short or paired-​end reads is typically around 1 kb; with 
PacBio or Oxford Nanopore long reads, the phase block 
N50 size improves to around 100 kb to 500 kb; and with 
10X Genomics linked reads with an average fragment 
size of 100 kb, the phase block N50 can extend to 10 Mb 
or beyond13. Hi-​C-based approaches for phasing can, in 
principle, phase over even larger distances, including 
up to the entire length of the chromosome. However, 
the main challenge for Hi-​C data is that the connections 
between variants will be sparse, so the genome may be 
phased into many regions containing few variants. A 
powerful technique is to combine multiple technolo-
gies, such as 10X Genomics or long reads, to establish 
the initial phase blocks and then combine those phase 
blocks using Hi-​C data into nearly complete phased 
chromosomes13.

After creating a phased VCF file of variants, a variety 
of downstream processing tools are available, including 
the AlleleSeq pipeline for studying allele-​specific expres-
sion or binding94. Multiple challenges remain, including 
phasing higher ploidy sequences (for example, plant or 
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Fig. 3 | Phasing concepts and requirements. a | An illustration of using 
the reads to phase heterozygous variants, with coloured rectangles 
representing reads, and X and O representing heterozygous alleles. Reads 
spanning heterozygous variants can be used to phase the reads between 
the two haplotypes, shown here as red and blue reads. If the heterozygous 
variants are separated by a distance greater than the read length or span, 
it will not be possible to phase those variants, creating two phase blocks 
and an unphased region in this example (purple reads). b | Idealized 
analysis of the maximum phase block N50 length possible by phasing 

heterozygous single nucleotide polymorphisms (SNPs) in the NA12878 
human genome using reads of different lengths. This shows that 
substantial improvements in phase block length are possible over short-​
read sequencing using long reads (~10 kb), linked-​read sequencing 
(~100 kb) or Hi-​C-based mate pairs (up to 1 Mb or longer). Note: real data 
containing errors and variable read lengths may not achieve the lengths 
shown here. c | Similar to part b but showing the number of variants phased 
in each phased block as a function of the read length. SNP data are 
available from Ref.133.
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cancer genomes), phasing SVs and providing additional 
functional analysis of phased genomes.

Isoform resolution and gene quantification
Transcription is one of the most important molecular 
processes, as it is a major determinant of the repertoire 
and abundances of RNAs and proteins within each 
cell. Alternative splicing is a widely used mechanism 
in eukaryotic organisms to increase the variety of pro-
teins. For example, in Drosophila melanogaster, alterna-
tive splicing is used to determine sex-​specific forms of 
the gene dsx, which is one of the major genes of the sex 
determination system. Whereas in males, exons 1–3,  
5 and 6 are spliced together (that is, skipping of exon 4), 
females use just exons 1–4 to obtain a protein product 
that is important for female development95. Alternative 
splicing also plays a major role in human genetics, where 
it is estimated that 95% of multi-​exon genes are alterna-
tively spliced96. The complexity of the human transcrip-
tome is astounding, as the average human gene consists 
of 12 exons and has an average length of about 2,100 bp 
(Ref.97). Thus, there are thousands of potential isoforms 
for an average gene, although the number of annotated 
isoforms is typically in the dozens to hundreds per gene.

The development of RNA sequencing (RNA-​seq) 
using short reads greatly improved the quantification 
of gene expression compared with older microarray 
approaches98. Various gene quantification and differ-
ential expression methods are now available for use in 
many species and disease conditions99. However, one of 
the major limitations of these approaches is that owing 
to their short read lengths, they are fundamentally 
unable to resolve the structures of the most complex 
genes or gene families containing many similar iso-
forms. PacBio100 (specifically, Iso-​Seq cDNA transcript 
sequencing) and Oxford Nanopore101,102 long-​read 
sequencing have the potential to dramatically enhance 
the analysis of alternative splicing. As the read length of 
these technologies is now commonly over 10 kb, cDNA 
sequencing or direct RNA sequencing can capture entire 
transcripts within single reads and thus directly deter-
mine the underlying exon combinations. Thus, maybe 
not surprisingly, current studies using long reads often 
find thousands of new isoforms but only a few novel 
genes in the human genome and other well annotated 
genomes20,100,103,104 (Fig. 4). For example, a recent maize 
multi-​tissue analysis using PacBio long reads revealed 
over 100,000 transcripts, most of them novel and 
tissue-​specific104.

The main bioinformatics methods for studying 
gene isoforms relying exclusively on long reads are 
the TAPIS100 pipeline over multiple rounds of map-
ping, as well as the ToFU PacBio pipeline105. These 
pipelines include mechanisms to control for different 
artefacts, such as sequencing errors, that would other-
wise obscure the true exon boundaries. For example, 
ToFU first clusters the RNA-​seq reads belonging to 
the same isoform to obtain an error-​corrected isoform 
assembly that is then aligned to the reference genome. 
Nevertheless, there have been large discrepancies 
observed in the number of potential isoforms between 
different pipelines106. Differences in sample preparation 

are likely to contribute to the discrepancies, although 
the underlying biases of using long reads for transcrip-
tome analysis are not fully understood. These conflicts 
can be addressed only with the further development of 
novel quality control (QC) methods and benchmark-
ing projects. Furthermore, the lower yield of the long-​
read technologies limits the quantification as well as 
the assessment of low-​expressed isoforms, motivating 
the development of hybrid approaches, such as isoform 
detection and prediction (IDP), that use long reads to 
determine isoform structure and short reads for quan-
tification107,108. Finally, although not currently used 
for isoform resolution, the 10X Genomics Chromium 
platform109 can be used for high-​throughput gene 
expression analysis of single cells, and their CellRanger 
bioinformatics software can be used for analysing and 
clustering of up to 1 million cells.

Direct sequencing of epigenetic modifications
Long-​read sequencing has also improved the analysis of 
epigenetic modifications, especially the direct detection 
of methylated nucleotides. Methylation signals are a key 
concept of genetics110. For example, the lack of methyla-
tion is widely used by bacteria to detect and cleave inva-
sive phage DNA. In eukaryotes, the role of methylated 
nucleotides varies across species, cell type and sequence 
composition, with major roles in the repression of gene 
expression, regulation of embryo development and the 
determination of chromatin structure of cells, to name a 
few. The most commonly studied forms of methylation 
are 5-methylcytosine (5mC), 5-hydroxymethylcytosine 
(5hmC) and 6-methyladenine (6 mA), although several 
additional forms are known. The current standard to 
study 5mC modifications is bisulfite sequencing using 
short reads110. Despite being a major improvement over 
older protocols, this approach suffers from multiple 
biases. Most notably, bisulfite treatment can introduce 
various coverage and sequencing artefacts, and the 
short reads become even more difficult to map correctly 
because most of their sequences consist of a three-​letter 
alphabet as non-​methylated cytosines are converted to 
thymines following bisulfite treatment111.

Both PacBio and Oxford Nanopore sequencing allow 
for direct identification of methylation while sequenc-
ing native DNA (Fig. 5). The major bioinformatics chal-
lenge for these approaches is the relatively subtle shift 
in signal induced by methylation, requiring powerful 
statistical techniques to detect real methylation events 
from technical noise. With PacBio’s BaseMods software, 
methylation is detected by analysing the rate at which the 
polymerase incorporates nucleotide along the template 
DNA — the interpulse duration (IPD)112. If the current 
nucleotide is methylated, the polymerase momentarily 
pauses before incorporating the next nucleotide, leading 
to a detectable shift in IPD. Analysis of the IPD has been 
a powerful technique to discover new methyltransferases 
in microbial genomes113 and even to detect the pres-
ence of 6 mA methylation in Caenorhabditis elegans114. 
Nevertheless, the detection of these signals requires deep 
coverage to robustly identify methylated nucleotides, 
which has limited the application primarily to microbial 
genomes. For example, PacBio recommends over 500× 
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coverage to detect common 5mC methylation, although 
other modifications do not require as extreme levels.

More recently, two groups introduced methods, 
Nanopolish22 and SignalAlign21, to analyse meth-
ylated bases using Oxford Nanopore sequencing. 
Similar to PacBio, the methylation is detected in 

native DNA, although these approaches analyse the 
electric current of methylated and non-​methylated 
nucleotides, which causes a minute, but detectable, 
shift in current of a few picoamps. A hidden Markov 
model (HMM) is then used to distinguish these pat-
terns and can distinguish three cytosine variations 

131,500 131,000 130,500 130,000 129,500

a  Gene model for sb02g000230

b  PacBio model

c  Isoforms

d  Reads

SB02G000230_9
SB02G000230_8
SB02G000230_7
SB02G000230_6
SB02G000230_5
SB02G000230_4
SB02G000230_2
SB02G000230_14
SB02G000230_13
SB02G000230_12
SB02G000230_11
SB02G000230_10
SB02G000230_1
SB02G000230.1

Fig. 4 | Example of a novel isoforms discovered using long-​read sequencing. 
An example of a gene sb02g000230 in the cereal Sorghum bicolor L. Moench. 
The overlapping exons and alternative splicing make this gene particularly 
difficult to resolve with short reads; hence, the previous gene models based on 
short reads (part a) contain a single splice isoform for this gene. By contrast, the 
Pacific Biosciences (PacBio) long reads allow for 13 novel splice isoforms to be 

confidently determined. The PacBio-​based gene model (part b) and individual 
isoforms (part c) are shown, as well as the individual aligned reads (part d). The 
grey arrows represent previously annotated exons, newly identified exons are 
shown in blue and exons with differing exon boundaries are shown in purple 
and orange. Figure is adapted from Ref.100, Macmillan Publishers Limited, CC-​
BY-4.0 (https://creativecommons.org/licenses/by/4.0/).
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(C, 5mC and 5hmC) and two adenine variations  
(A and 6 mA). Although these are clear accomplish-
ments, multiple issues remain, such as collecting 
accurate training data for the HMM for extending 
the model to study additional types of methylation. 
Furthermore, both groups reported the variability in 
output of the sequencer to be the major confounder 
of errors, including those caused by confounding 
environmental conditions, such as the temperature 
of the room22.

Overall, both PacBio and Oxford Nanopore can 
provide novel insights and advantages compared with 
the current standard bisulfite sequencing. Very recent 
work has even shown that Oxford Nanopore sequenc-
ing can directly read and detect modifications within 
RNA molecules115, something that is not possible to 
study using second-​generation sequencing without 
using complex protocols. However, the field is currently 

limited in QC methods and scalable analysis methods 
that will enable routine whole-​genome analysis of 
eukaryotic genomes.

Conclusions and future directions
Emerging long-​range sequencing and mapping tech-
nologies, coupled with new bioinformatics software, 
are starting to produce genomes, transcriptomes 
and epigenomes of remarkable quality. Even for 
large mammalian or plant genomes, great gains have 
been made, with results approaching or exceeding 
those from older, more expensive BAC-​by-BAC or 
fosmid-​based assemblies. This is most easily meas-
ured by the contig and scaffold sizes that are hundreds 
to thousands of times longer than corresponding 
second-​generation sequencing assemblies or the mul-
titude of variants or isoforms that are detectable only 
using the new technologies. These results, with full 
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chromosomal resolution, are truly reference quality 
and enable improved analysis of nearly every aspect 
of a genome: more complete and accurate representa-
tions of genes; better determination of clinically rele-
vant variants (Box 1); improved mapping of regulatory 
regions and other important genomic elements; and 
improved phasing of variants for allele-​specific analy-
sis, as well as better resolution of the overall chromo-
some organization. It is also important to highlight that 
several of these applications, especially de novo assem-
bly, SV detection and phasing, are highly interrelated 
to each other and must be addressed at the same time 
to produce the best results.

With this resurgence of quality, the remaining bioinfor-
matics research focuses on cost, accuracy, computational 
performance, the complexity of the sample and the scale 
of the analysis. The highest-​quality genome assemblies 
have been achieved with the longest possible reads, aided 
by the longest possible mapping information12,15,57, such as 
a combination of PacBio or Oxford Nanopore sequenc-
ing along with 10X, Hi-​C or BioNano Genomics data 
for scaffolding. Interestingly, thanks to advanced bio-
informatics approaches, the per nucleotide sequencing 
error rate of the reads has had relatively little effect on 
the per nucleotide assembled sequence accuracy, as they 

can effectively reduce even 30% per nucleotide error to 
below 1% with sufficient coverage (~30× or greater cover-
age). However, as long-​read sequencing is currently more 
expensive than short-​read sequencing, further research 
into hybrid methods that can more effectively combine 
data types is necessary if these methods will ever be able 
to scale to large population studies. This includes both 
using a combination of data types for sequencing a sin-
gle sample, such as inexpensive short-​read sequencing 
to augment more expensive long-​read sequencing, and 
leveraging the relatively few high-​quality genomes that 
have been sequenced using the long-​range technologies 
to improve the analysis of the much larger numbers of 
genomes sequenced with only short-​read technologies. 
Finally, certain combinations of data, such as using  
Hi-​C data for scaffolding or variant detection, are 
relatively unexplored compared with more mature topics, 
such as short-​read and long-​read error correction and 
assembly.

The computational costs of using these data are 
not insignificant, with some recent long-​read analyses 
requiring nearly 1 million central processing unit (CPU) 
hours for the wheat genome116 and tens of thousands 
of CPU hours for the human genome29. Additional 
algorithmic and systems research is clearly needed to 

Box 1 | clinical applications for long-​range sequencing and mapping

Long-​read sequencing and long-​range mapping are currently used primarily for research applications, although their 
superior resolution is appealing for clinical applications as well. One important clinical application has been to improve 
the characterization of the major histocompatibility complex (MHC) locus among patients and research subjects123. this 
locus encodes many important genes for the immune system, making it a major target of translational research. it is also 
essential to precisely characterize the sequence between transplant patients to ensure compatibility of the human 
leukocyte antigen (HLa) genes. However, because of its variability and complexity, second-​generation sequencing is 
generally not sufficient to fully resolve the sequence in a given patient, although several reports have shown that the new 
biotechnologies allow for complete resolution124–126.

another important clinical application has been to detect complex structural variants (svs) associated with disease 
that were missed or difficult to detect by earlier technologies. in one example, Pacific Biosciences (PacBio) long-​read 
sequencing was used to detect a 2,184 bp heterozygous deletion of the PRKAR1A gene in a patient displaying multiple 
neoplasia and cardiac myxomata. this sv was determined to be the causal pathogenic variant18 and could be robustly 
found only with 10× coverage long-​read sequencing, whereas it was more challenging to detect with >30× coverage 
short-​read sequencing. in another study, researchers used PacBio long-​read genome and transcriptome sequencing of 
the sKBr3 breast cancer cell line to discover tens of thousands of svs that had been missed using short-​read 
approaches127. this approach also allowed for a precise characterization of the amplification of the important ERBB2  
(also known as HER2) oncogene, revealing a complex series of nested translocations and duplications between 
chromosomes 17 and 8. a final example has been how the hand-​held, low-​cost Oxford Nanopore MiniON instrument  
was used for sequencing ebola128 and Zika129 virus isolates in west africa and south america. these examples showed 
that rapid genomic characterization was possible in the field and hints towards the possibility of widespread deployment 
to essentially any hospital, office or school in the world130.

Despite their many advantages, these technologies have multiple drawbacks for clinical care and are therefore not yet 
widely used outside of research. One major concern is the requirement for large quantities of high molecular weight DNa 
to exploit the new technologies. PacBio and Oxford Nanopore are especially challenging, requiring 1,000 times more 
DNa than second-​generation sequencing (~10 micrograms instead of ~10 nanograms) and special handling protocols to 
limit shearing. the shearing requirement is also a major obstacle for 10X Genomics, BioNano Genomics or Hi-​C 
approaches, especially in solid tissues or solid tumours, where high molecular weight DNa can be challenging to extract.

Furthermore, as highlighted several times throughout this review, these technologies have their own biases and 
limitations, but there are relatively few methods for quality control that are necessary to inform clinical decisions. the 
challenges are compounded by the lack of database systems for interpreting complicated svs, but these can be 
developed only through widespread deployment to many patients over many years. Finally, as in a research setting, the 
increased costs are a major barrier, although a few reports are starting to highlight cases where the increased costs were 
offset by the improved diagnostic power18. these technologies decrease in price every year and have now reached similar 
levels to other widely used diagnostic equipment (for example, computed tomography (Ct) scans). One pragmatic cost-​
saving approach is the use of capture-​based technologies to focus the analysis on the most relevant regions first126, 
analogous to how exome capture or targeted panels with second-​generation sequencing are commonly used today131.
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make these analyses faster and more practical. Accuracy 
improvements have been made possible through 
advances in base calling and polishing, although 
new machine-​learning techniques, such as advanced 
graphical models or deep-​learning technologies, 
could be used to further improve sequence accu-
racy or improve the detection of genomic variants 
or epigenetic modifications117. The new technolo-
gies have led to some improvements for assembling 
metagenomes118–120, although virtually no bioinformatics 
tools are currently available for assembling polyploid or 
aneuploid genomes. Algorithms for phasing polyploid 
or aneuploid genomes are also in their early stages, 
despite being very common for plant genomes or in 
human diseases such as cancer. We also recommend 
that researchers carefully monitor the developments 
in the field, as these technologies are all rapidly 
evolving, and new technologies are already under 
development.

Finally, as these technologies mature, it is likely that 
many projects will begin with fully assembled genomes 
instead of variant lists, opening new opportunities for 
studying genetic variation across large populations, 
especially SVs that are difficult to analyse without these 
technologies. As such, a very active area of research 
is developing methods to assemble and analyse the 
pan-​genome for a species where the genomes of mul-
tiple individuals are represented in one unified graph 
structure121,122. Achieving this will take years of effort to 
retool and rethink analyses that are now performed with 
a single linear reference, including downstream aligners, 
variant callers, epigenetic modification detection tools, 
visualization tools and related software. Nevertheless, we 
encourage researchers to focus on these methods as such 
representations will offer many advantages for studying 
population genetics for research or clinical needs.
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Metagenomes
The genomes of all the species 
present in a sample, studied 
without culturing or otherwise 
isolating any individual.
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