
High-throughput Sequence Alignment Using
Graphics Processing Units

Michael C. Schatz, Cole Trapnell, Arthur L. Delcher , and Amitabh Varshney
Center for Bioinformatics and Computation Biology, University of Maryland, College Park, MD, USA

http://mummergpu.sourceforge.net

Suffix Tree Search

7

5 1

3 6 2

4

C

$

TAC$
$ ATAC$

TAC$
A C

$ ATAC$ Suffix tree of “ACATAC$”

Searching for “AC”: found at positions 1 & 5

Searching for “ACT”: falls off tree => Not in Ref.

The recent availability of new, less expensive high-throughput DNA sequencing
technologies has yielded a dramatic increase in the volume of sequence data that must be
analyzed. These data are being generated for several purposes, including genotyping, genome
resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment
programs such as MUMmer have proven essential for analysis of these data, but researchers
will need ever faster, high-throughput alignment tools running on inexpensive hardware to
keep up with new sequence technologies.

Traditionally, Graphics Processing Units (GPUs) have been highly specialized with two
distinct classes of graphics stream processors: vertex processors, which compute geometric
transformations on meshes, and fragment processors, which shade and illuminate the
rasterized products of the vertex processors. Modern GPUs include several processors (tens
to hundreds) of each type, and are organized in a streaming, data-parallel model in which the
processors execute the same instructions on multiple data streams simultaneously. As GPUs
have become increasingly more powerful and ubiquitous, though, researchers have begun
using its power for non-graphics, or general-purpose (GPGPU) applications.

MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the
increasing volume of data produced by new, high-throughput sequencing technologies.
MUMmerGPU is a GPGPU drop-in replacement for MUMmer, using the GPUs in common
workstations to simultaneously align multiple query sequences against a single reference
sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel
graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU
version of the sequence alignment kernel, and outperforms MUMmer on a high end CPU by
3.5-fold in total application time when aligning reads from recent sequencing projects using
Solexa/Illumina, 454, and Sanger sequencing technologies.

3.4712035.96 ± 0.2726,592,5002,007,491Streptococcus suis
Illumina/Solexa sequencing

3.79120200.54 ± 60.516,620,4712,944,528Listeria monocytogenes

454 pyrosequencing

3.712100717.84 ± 159.442,357,66613,163,117Caenorhabditis briggsae Chr. III
Sanger sequencing

Speedup# of suffix

trees (k)

Min alignment

length (l)

Query length

mean ± stdev

of

queries

Reference

length (bp)

Reference
Sequence alignment algorithms find regions in one sequence, called the query sequence, that
are similar or identical to regions in another sequence, called the reference sequence.
MUMmerGPU, like its serial CPU counterpart MUMmer, aligns a set of query sequences
against a reference sequence using a suffix tree and reports all exact alignments between the
two. The exact alignments can be processed directly or used to seed longer in-exact
alignments. Unlike its serial counterpart, the alignment kernel is executed in parallel on a
highly parallel graphics card.

We measured the performance of MUMmerGPU by comparing the execution time of the
GPU and CPU version of the alignment code, and the total application runtime of
MUMmerGPU versus MUMmer on a high end 3.0 GHz Intel Xeon with 2GB of system
RAM. We ported MUMmerGPU to use the CPU instead of the GPU to isolate the benefit of
using graphics hardware over running the same algorithm on the CPU. Porting
MUMmerGPU to the CPU required only straightforward syntactic changes, and involved no
algorithmic changes.

1

2 3 4 5

6 7 8 9 10 11 12 13

14 15 16 17 18 19 21 2320 22 24 25 26 27 28 29

0 2 4 6 8 10 12 14

1 3 5 7 9 11 13 15

16 18 20 22 24 26 28 30

17 19 21 23 25 27 29 31

2. Optimize Tree Layout
MUMmerGPU uses nVidia G80 class graphics cards, such as the GTX 8800, which use a 2D
cache for their on-board RAM. When the suffix tree is constructed, the nodes will be created
with an arbitrary order, and scattered in RAM. MUMmerGPU therefore rearranges the nodes
along a space filing curve into a 2D array so that a node and its children will be in close
proximity in the graphics card’s memory. This helps improve the cache hit rate during
sequence alignment.

3. Transfer Data to GPU
The processors on the graphics card can read and write only to the on-board RAM. Therefore
the suffix tree, and the query sequences are transferred in bulk to the GPU. The GTX 8800
has enough on-board RAM to store a tree for a several Mbp genome and tens of thousands of
queries. If the reference and queries are too large to fit on the card, they are broken up into
segments which are processed separately.

4. Align Sequences & Output Results
Once the suffix tree and query data are transferred to the GPU, MUMmerGPU executes the
alignment kernel in parallel on the GPU. Each instance of the kernel runs on a single
processor and executes the serial suffix tree alignment algorithm for a single query. The
kernel finds all subsequences of the query greater than the minimal specified length (l) that
exactly match the reference sequence. The alignment results are first written to the on-board
RAM and then transferred back to the main system RAM after all of the alignments are
complete. MUMmerGPU post-processes and prints the results on the CPU using the same
output format as MUMmer.

1. Synthetic Reads
We aligned 50-, 100-, 200-, 400-, and 800-bp
synthetically constructed reads to the Bacillus
anthracis genome in order to explore
MUMmerGPU's performance in the absence
of errors and over a wider variety of query
lengths then are available with genuine reads.
Each test set contained exactly 250Mbp of
query sequence divided evenly among all the
reads in the set. For small query lengths, the
GPU kernel executing in parallel was more
than 10-fold faster than the CPU version of the
kernel executed in serial. For longer reads, the
speedup is less dramatic, due to the smaller
cache size and decoherence of the GPU.

We aligned the reads against both strands
of the chromosomal DNA for L.
monocytogenes and S. suis, and against
both strands of chromosome III of C.
briggsae. In all cases we compared the
end-to-end wall clock running time of
MUMmerGPU versus MUMmer.
Overall, MUMmerGPU was on average
more than 3.5-fold faster execution
running on the GPU than on the CPU.
The running time of MUMmerGPU is
dominated printing matches and other IO.

Our results show that a significant speedup, as much as a 10-fold speedup, can be achieved
by executing the memory intensive sequence alignment program on the GPU with cached
texture memory and data reordering. This speedup is realized only for large sets of short
queries, but these read characteristics are beginning to dominate the marketplace for genome
sequencing. For example Solexa- Illumina sequencing machines create on the order of 200
million 50bp reads in a single run. For a single human genotyping application, reads from a
few runs need to be aligned against the entire human reference genome. Thus our
application should perform extremely well on workloads commonly found in the near
future.

1. Construct Suffix Tree of Reference Sequence
A suffix tree is a tree which encodes every suffix of a sequence on a unique path from the
root to a leaf. A sequence of length n has n suffixes and has n leaf nodes in the corresponding
suffix tree. Edges are labeled with substrings of the reference sequence, and internal nodes
represent positions where the suffixes diverge. Given a suffix tree, exact alignments between
the reference and a query sequence can be found in time proportional to the length of the
query by walking the tree from the root according to the characters in the query.

Reference

Query

G80 Architecture
The GTX 8800 has 16 multiprocessors
and 768 MB of ob-board RAM. Each
multiprocessor has 8 processors, for a total
of 128 processors running at 1.35 GHz.
The 8 processors in a multiprocessor are
controlled by a single instruction unit, and
must execute the same instructions.

Alignment Kernel
The alignment kernel was written in a
restricted form of C using the Compute
Unified Device Architecture (CUDA) from
nVidia. CUDA makes it easy to compile
and execute kernel code, but the GPU
processors are limited and cannot use
recursive functions or call stack.

Abstract

MUMmerGPU Algorithm

Results

Conclusions

2. Genuine Reads
Next, we aligned reads from several sequencing projects against their genomes, as would be
necessary for a resequencing or genotyping project.

