## 100 Genomes in 100 Days: The Structural Variant Landscape of Tomato Genomes

Michael Schatz

February 28, 2019 AGBT





## Tomato Domestication & Agriculture

#### Tomatoes are one of the most valuable crops in the world

- Worldwide annual production >175 million tons & >\$85B
- Major ingredient in many common foods:
  - Sauces, salsa, ketchup, soups, salads, etc

#### Tomatoes are an important plant model system

- Originally from South America, transported to Europe by early explorers in the 17<sup>th</sup> century, and then back to North America in the 18<sup>th</sup> century
- Extensive phenotypic variation: >15,000 named varieties
  - Model for studying fruiting and flowering
- Member of important Solanaceae family
  - Potato, pepper, eggplant, tobacco, petunia, etc



### Tomato Genomics and Genetics



#### **Tomato Reference Genome published in May 2012**

- International consortium from 14 countries requiring years of effort and tens of millions of dollars
  - Sanger + 454 + fosmids + BAC-ends + genetic map + FISH
- 'Heinz 1706' cultivar (v3)
  - 12 chromosomes, 950 Mbp genome, diploid
  - 22,707 contigs, 133kbp contig N50, 80M 'Ns'
  - 20Mb on "chromosome 0"
- Resource for thousands of studies
  - Candidate SNPs for many traits identified through GWAS
  - Candidate genes and pathways through RNAseq
  - Extensive investment into agricultural traits:
    - ripening, flavor, fruit size, color, morphology

## Structural Variations Are Drivers of Quantitative Variation



#### Recent results highlight structural variations to play a major role in phenotypic differences

- SV are any variants >50bp: insertions, deletions, inversions, duplications, translocations, etc
- Adds, removes, and moves exons, binding sites, and other regulatory sequences
- Notoriously difficult to identify using short reads: high false positive & false negative rate

# Structural Variation Landscapes in Tomato Genomes and their role in Natural Variation, Domestication, and Crop Improvement





Zach Lippman CSHL / HHMI



Joyce Van Eck Boyce Thompson



**Esther van der Knaap** Univ. of Georgia



Fritz Sedlazeck Baylor



Sara Goodwin
CSHL

#### Project overview

- 1. Select diverse samples
- 2. Long read sequencing
- 3. Per-sample SV identification
- 4. Pan-tomato SV landscape
- 5. Identify and validate SVs associated with agricultural and phenotypic traits

~ Part I ~
Sample Selection



## Tomato Population Genetics

## More than 900 varieties of tomato and related species have been sequenced with short reads

- Most are between 20x and 40x coverage
- SNP-based phylogenetic tree shows 10 major clades

#### Initial examination of SVs

- Identify variants using an aggregation of three individual methods to improve sensitivity
  - Lumpy, Manta & Delly
- Consensus calls using SURVIVOR (Jeffares et al, Nature Communications, 2017)
  - Retain calls supported by ≥ 2 callers
  - Reduces false-positives while not worsening false-negatives



## Optimized Sample Selection



## Our goal is to select the 100 samples that *collectively* capture the most diversity

- Short-read based SVs will under-sample variants but still represents relative diversity
- Selecting 100 at random only recovers about 40% of the total known diversity
- Optimal strategy is NP-hard using a setcover algorithm, we approximate using a greedy approach
  - Ranking samples by number of variants picks diverse samples, although tends to pick siblings (nearly duplicate samples)

**SVCollector: Optimized sample selection for validating and long-read resequencing of structural variants** Sedlazeck et al (2018) bioRxiv doi: https://doi.org/10.1101/342386

## Optimized Sample Selection



**SVCollector: Optimized sample selection for validating and long-read resequencing of structural variants** Sedlazeck et al (2018) bioRxiv doi: https://doi.org/10.1101/342386

## ~ Part 2 ~ Long Read Sequencing



Sara Goodwin





#### Sequencing strategy

- Initial proposal called for mix of short, long, and linked read sequencing
- MinION and GridION became feasible spring/summer 2018
- Encouraging PromethION yields on test runs mid-summer 2018 motivated switch in strategy







#### **Sequencing strategy**

- Initial proposal called for mix of short, long, and linked read sequencing
- MinION and GridION became feasible spring/summer 2018
- Encouraging PromethION yields on test runs mid-summer 2018 motivated switch in strategy







#### Sequencing strategy

- Initial proposal called for mix of short, long, and linked read sequencing
- MinION and GridION became feasible spring/summer 2018
- Encouraging PromethION yields on test runs mid-summer 2018 motivated switch in strategy









## Nanopore Read Lengths

#### **Optimized Sequencing strategy**

- Fragmentation at 30kbp using the Megarupter
- 109 Ligation Sequencing Kit yields both long reads and high yield

#### **Very long reads with PromethION**

- Mean read length: 15kbp 25kbp
- Read length N50: 25kbp 30kbp
- Over 20x coverage of reads over 20kbp





From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy Rang et al (2018) Genome Biology. https://doi.org/10.1186/s13059-018-1462-9



From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy Rang et al (2018) Genome Biology. https://doi.org/10.1186/s13059-018-1462-9



From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy Rang et al (2018) Genome Biology. https://doi.org/10.1186/s13059-018-1462-9

## ~ Part 3 ~ Structural Variation Identification



### Structural Variation Identification

#### Two major strategies for detection

#### Alignment-based detection

- Split-read alignment to detect the breakpoints of events
- Fast, accurately identifies most variants, including heterozygous variants
- Very long insertions may be incomplete

#### Assembly-based detection

- De novo assembly followed by whole genome alignment
- Can capture novel sequences and other complex variants
- Slow, demanding analysis, limited by contig length, heterozygous variants challenging



Genome structural variation discovery and genotyping

Alkan, C, Coe, BP, Eichler, EE (2011) Nature Reviews Genetics. May;12(5):363-76. doi: 10.1038/nrg2958.

## Alignment Based Analysis

#### **BWA-MEM**



#### **NGMLR**



**NGMLR:** Dual mode scoring to accommodate indel errors plus SVs **CrossStitch:** Local re-assembly across variants to improve breakpoints

Accurate detection of complex structural variations using single molecule sequencing Sedlazeck, Rescheneder, et al (2018) Nature Methods. doi:10.1038/s41592-018-0001-7

## De novo Assembly

#### Gold level assemblies with Canu

- Well-established, integrated correction & assembly
- Contig N50 sizes >10-fold better than reference
- Main challenge is speed
  - ~2 weeks per assembly on ~320 cores

#### **Exploring faster options**

- Miniasm (Li, Bioinformatics, 2016) runs in ~72 core hours (+1.5 days for consensus)
- Wtdbg2 (https://github.com/ruanjue/wtdbg2) runs in ~8 core hours (+1.5 days for consensus) although mixed results depending on sample
- Discussing cloud-enabled pipelines with DNAnexus



Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation Koren et al (2018) Genome Research. doi: 10.1101/gr.215087.116

## RaGOO: Fast and accurate reference-guided scaffolding

#### Reference guided scaffolding

- Use the reference genome as a "genetic map"
- Effective when sample is structurally similar to reference



#### **Validation using Hi-C**

 Reference-guided scaffolding leads to more complete and more accurate chromosomes



Fast and accurate reference-guided scaffolding of draft genomes

Alonge et al (2019) bioRxiv. https://www.biorxiv.org/content/early/2019/01/13/519637

## Assembly Based Analysis

## RaGOO scaffolding yields essentially complete chromosomes

- Final polishing using Bowtie2 + Pilon
  - Substantially faster than Nanopolish, and modestly more accurate based on gene-analysis and alignment to reference
- Gene annotations using MAKER

#### **Identify structural variants using Assemblytics**

- Finds variants within and between alignments
- Especially important for large insertions of novel sequences
- Tens of thousands of SVs, widely distributed across chromosomes



Assemblytics: a web analytics tool for the detection of variants from an assembly Nattestad, M, Schatz, MC (2016) Bioinformatics. doi: 10.1093/bioinformatics/btw369

~ Part 4 ~
The Landscape of Structural
Variation in Tomato Genomes



## The landscape of structural variations

#### Landscape of the first 20 accessions

- Substantial variation between samples
  - 15 to 50 thousand structural variations each
  - Mostly insertions + deletions

#### **Population Genetics**

- Most variants specific to 1 sample
- Many variant shared by multiple samples, including some in all 20



## Identification of the ej2 Tandem Duplication

#### Validation of our first SV association

- Crosses of tomato plants with a highly desirable breeding trait (j2: jointless2) and a desirable domestication trait (ej2: an enhancer for j2) are typically poorly producing plants – a negative epistatic interaction
- However some breeding lines carry both alleles and yet have good yields through unknown means
  - One of our first samples was such a breeding line and revealed a 83kbp tandem duplication spanning ej2
  - Validated the duplication using Sanger, RNA-seq and quantitative genetics to conclude the duplication of the locus causes stabilization of branching and flower production
- Now able to use CRISPR/cas9 to overcome the negative epistatic interaction to improve fruit yields

Soyk et al (2019) Under Review





## Identification of the ej2 Tandem Duplication

#### Validation of our first SV association

- Crosses of tomato plants with a highly desirable breeding trait (j2: jointless2) and a desirable domestication trait (ej2: an enhancer for j2) are typically poorly producing plants – a negative epistatic interaction
- However some breeding lines carry both alleles and yet have good yields through unknown means
  - One of our first samples was such a breeding line and revealed a 83kbp tandem duplication spanning ej2
  - Validated the duplication using Sanger, RNA-seq and quantitative genetics to conclude the duplication of the locus causes stabilization of branching and flower production
- Now able to use CRISPR/cas9 to overcome the negative epistatic interaction to improve fruit yields

Soyk et al (2019) Under Review



## Summary & Future Work

## High throughput long read sequencing is unlocking the universe of structural variations

- Discovering tens of thousands of variants previously missed, as well as clarifying tens of thousands of false positives per sample
- Possible to rapidly characterize pan-genomes with >100 samples
- Throughput & accuracy rapidly improving, realtime direct alignment of nanopore signal data

#### **Beyond mere structural variation identification**

- ..... towards "Rules of Life" interaction maps and beyond
- Identify the specific pathways for many important traits
- Discovery and dissection of cis-regulatory epistasis
- Analysis of epigenetic modifications
- Engineering domestication traits in "wild" plants

Expect to see similar results in all other plant and animal species

~~~ Sergey Aganezov @ 7:50pm Cancer Session ~~~



## Acknowledgements

#### **Schatz Lab**

Mike Alonge

**Srividya** 

Ramakrishnan

Sergey Aganezov

**Charlotte Darby** 

Arun Das

Katie Jenike

Michael Kirsche

Sam Kovaka

T. Rhyker

Ranallo-Benavide

Rachel Sherman

\*Your Name Here\*

#### **Lippman Lab**

Sebastian Soyk

Xingang Wang

**Zachary Lemmon** 

#### **Cold Spring Harbor Laboratory**

Sara Goodwin

W. Richard McCombie

#### **Baylor College of Medicine**

Fritz Sedlazeck

#### **Boyce Thompson**

Joyce Van Eck

#### **University of Georgia**

Esther van der Knaap











# Thank you!

@mike\_schatz
http://schatz-lab.org

~~~ Sergey Aganezov @ 7:50pm Cancer Session ~~~