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Tomato Domestication & Agriculture

Tomatoes are one of the most valuable crops in the world
© Worldwide annual production >175 million tons & >$85B
© Major ingredient in many common foods:

— Sauces, salsa, ketchup, soups, salads, etc

Tomatoes are an important plant model system

© Originally from South America, transported to Europe by early
explorers in the 17t century, and then back to North America
in the 18" century

0 Extensive phenotypic variation: >15,000 named varieties
— Model for studying fruiting and flowering

0 Member of important Solanaceae family
— Potato, pepper, eggplant, tobacco, petunia, etc




Tomato Genomics and Genetics

Tomato Reference Genome published in May 2012

© International consortium from 14 countries requiring years of
effort and tens of millions of dollars

— Sanger + 454 + fosmids + BAC-ends + genetic map + FISH

0 ‘Heinz 1706’ cultivar (v3)
— 12 chromosomes, 950 Mbp genome, diploid
— 22,707 contigs, 133kbp contig N50, 80M 'Ns’
— 20Mb on “chromosome 0”
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— ripening, flavor, fruit size, color, morphology



Structural Variations Are Drivers of Quantitative Variation
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Recent results highlight structural variations to play a major role in phenotypic differences
© SV are any variants >50bp: insertions, deletions, inversions, duplications, translocations, etc

© Adds, removes, and moves exons, binding sites, and other regulatory sequences

0 Notoriously difficult to identify using short reads: high false positive & false negative rate



Genomes and their role in Natural Variation,
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Project overview

Select diverse samples
Long read sequencing
Per-sample SV identification

Pan-tomato SV landscape
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Tomato Population Genetics

More than 900 varieties of tomato and related

species have been sequenced with short reads

0 Most are between 20x and 40x coverage

© SNP-based phylogenetic tree shows 10 major
clades

Initial examination of SVs

© Identify variants using an aggregation of three
individual methods to improve sensitivity

— Lumpy, Manta & Delly

0 Consensus calls using SURVIVOR (Jeffares et
al, Nature Communications, 2017)

— Retain calls supported by = 2 callers

— Reduces false-positives while not worsening
false-negatives
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Cummulative Fraction of SVs

Optimized Sample Selection

2 Our goal is to select the 100 samples that
- ; ?o's:dy collectively capture the most diversity
2 4 | m random © Short-read based SVs will under-sample
- variants but still represents relative diversity
= } © Selecting 100 at random only recovers
. T about 40% of the total known diversity
S ] [[11111)se=" R © Optimal strategy is NP-hard using a set-
7 ,::iii"“:““"l ) cover algorithm, we approximate using a
S - UL greedy approach
a LA © Ranking samples by number of variants
S - picks diverse samples, although tends to

O 10 20 3 40 850 80 70 80 60 100 pick siblings (nearly duplicate samples)

Num Samples

SVCollector: Optimized sample selection for validating and long-read resequencing of structural variants
Sedlazeck et al (2018) bioRxiv doi: https://doi.org/10.1101/342386



Cummulative Fraction of SVs

Optimized Sample Selection
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SVCollector: Optimized sample selection for validating and long-read resequencing of structural variants

Sedlazeck et al (2018) bioRxiv doi: https://doi.org/10.1101/342386




~ Part 2 ~
Long Read Sequencing
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Yield Gbs

Nanopore Performance at CSHL

Sara Goodwin

Sequencing strategy

MinION + GridION N _
© Initial proposal called for mix of short, long,

20 -
and linked read sequencing
© MinlON and GridlON became feasible
spring/summer 2018
© Encouraging PromethlON vyields on test
runs mid-summer 2018 motivated switch
10 - in strategy
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Nanopore Performance at CSHL

MinlON + GridION
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Sara Goodwin

Sequencing strategy

© Initial proposal called for mix of short, long,
and linked read sequencing

© MinlON and GridlION became feasible
spring/summer 2018

© Encouraging PromethlON vyields on test
runs mid-summer 2018 motivated switch
in strategy



Yield Gbs

Nanopore Performance at CSHL
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Nanopore Performance at CSHL

- Sara Goodwin

Currently running 6 to 8 PromethlON flow cells in 140GB
parallel twice a week W

© Routinely achieve 80-90 Gb / flow cell, many over 100 Gb
O First 80 samples have been sequenced to at least 40x

© Now at 12 to 16 samples per week
— 100 Genomes in 100 Days
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Nanopore Read Lengths

Optimized Sequencing strategy

© Fragmentation at 30kbp using the Megarupter
© 109 Ligation Sequencing Kit yields both long
reads and high yield
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Very long reads with PromethlON

© Mean read length: 15kbp — 25kbp
© Read length N50: 25kbp — 30kbp
© Over 20x coverage of reads over 20kbp




Accuracy (%)
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Developments in base calling algorithms Transducer

Developments in nanopore chemistry
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RNN Transducer Raw base calling
MinION released (Nanonet) (Scrappie) (Albacore v2.0.1)

From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy
Rang et al (2018) Genome Biology. https://doi.org/10.1186/s13059-018-1462-9
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RNN Transducer Raw base calling
MinION released (Nanonet) (Scrappie) (Albacore v2.0.1)

From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy
Rang et al (2018) Genome Biology. https://doi.org/10.1186/s13059-018-1462-9
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From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy
Rang et al (2018) Genome Biology. https://doi.org/10.1186/s13059-018-1462-9
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Structural Variation ldentification
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Structural Variation ldentification

Two major strategies for detection e - R - -
Q Alignment-based detection = — - e —
— Split-read alignment to detect the breakpoints of events o
— Fast, accurately identifies most variants, including o s e S P
heterozygous variants =
— Very long insertions may be incomplete — T —
—— S — = e pors 4 Resowse
. ———
0 Assembly-based detection T — ———
— De novo assembly followed by whole genome - s waes Nt o — _‘_?:—,'n
alignment =
— Can capture novel sequences and other complex e _pemgy & == N NN
variants e Y
— Slow, demanding analysis, limited by contig length, — 05 e 0
heterozygous variants challenging e X

Genome structural variation discovery and genotyping
Alkan, C, Coe, BP, Eichler, EE (201 I) Nature Reviews Genetics. May;12(5):363-76. doi: 10.1038/nrg2958.



Alignment Based Analysis
BWA-I\!IEM

Accurate detection of complex structural variations using single molecule sequencing
Sedlazeck, Rescheneder, et al (2018) Nature Methods. doi:10.1038/s41592-018-0001-7



De novo Assembly

Gold level assemblies with Canu
0 Well-established, integrated correction & assembly
© Contig N50 sizes >10-fold better than reference
Q@ Main challenge is speed
— ~2 weeks per assembly on ~320 cores

Exploring faster options

Sequence length

© Miniasm (Li, Bioinformatics, 2016) runs in ~72 core
hours (+1.5 days for consensus)

0 Witdbg2 (https://github.com/ruanjue/wtdbg2) runs in
~8 core hours (+1.5 days for consensus) although
mixed results depending on sample

Q Discussing cloud-enabled pipelines with DNAnexus

Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation

Koren et al (2018) Genome Research. doi: 10.1101/gr.215087.116

Cumulative sequence length

Assembly
Slyc3.0: 66.7Mbp
- BGV: 3.63Mbp
* M82: 1.29Mbp
Slyc3.0_ctg: 108kbp
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RaGOOQO: Fast and accurate reference-guided scaffolding

Reference guided scaffolding Validation using Hi-C
0 Use the reference genome as a “genetic map” 0 Reference-guided scaffolding leads to more
O Effective when sample is structurally similar to complete and more accurate chromosomes
reference
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Fast and accurate reference-guided scaffolding of draft genomes
Alonge et al (2019) bioRxiv. https://lwww.biorxiv.org/content/early/2019/01/13/519637



Assembly Based Analysis

RaGOO scaffolding yields essentially complete
chromosomes
Q Final polishing using Bowtie2 + Pilon

— Substantially faster than Nanopolish, and
modestly more accurate based on gene-analysis
and alignment to reference

red: insertions
blue: deletions

© Gene annotations using MAKER

Identify structural variants using Assemblytics
© Finds variants within and between alignments

0 Especially important for large insertions of novel
sequences

0 Tens of thousands of SVs, widely distributed across
chromosomes

Assemblytics: a web analytics tool for the detection of variants from an assembly
Nattestad, M, Schatz, MC (2016) Bioinformatics. doi: 10.1093/bioinformatics/btw369
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The Landscape of Structural
Variation in Tomato Genomes




The landscape of structural variations

Landscape of the first 20 accessions  50000-
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|dentification of the ej2 Tandem Duplication

Validation of our first SV association

© Crosses of tomato plants with a highly desirable breeding
trait (j2: jointless2) and a desirable domestication trait
(ej2: an enhancer for j2) are typically poorly producing
plants — a negative epistatic interaction

© However some breeding lines carry both alleles and yet
have good yields through unknown means

— One of our first samples was such a breeding line and
revealed a 83kbp tandem duplication spanning ej2

— Validated the duplication using Sanger, RNA-seq and
quantitative genetics to conclude the duplication of the
locus causes stabilization of branching and flower
production

© Now able to use CRISPR/cas9 to overcome the
negative epistatic interaction to improve fruit yields

Soyk et al (2019) Under Review

Larger fruit stem
DOMESTICATION TRAIT

66'173'373 66'256'371
}---83 Kbp copy#1--4--- 83 Kbp copy#2 --4

F1 ej2" copy#1 F2 e2" copy#2
) — N >
R1 R1
GCAATCCT
deletion



|dentification of the ej2 Tandem Duplication

Validation of our first SV association

© Crosses of tomato plants with a highly desirable breeding
trait (j2: jointless2) and a desirable domestication trait
(ej2: an enhancer for j2) are typically poorly producing
plants — a negative epistatic interaction

© However some breeding lines carry both alleles and yet
have good yields through unknown means

— One of our first samples was such a breeding line and
revealed a 83kbp tandem duplication spanning ej2

— Validated the duplication using Sanger, RNA-seq and
quantitative genetics to conclude the duplication of the
locus causes stabilization of branching and flower
production

© Now able to use CRISPR/cas9 to overcome the
negative epistatic interaction to improve fruit yields

Soyk et al (2019) Under Review

Sebastian Soyk
Cold Spring Harbor Laboratory




Summary & Future Work

High throughput long read sequencing is unlocking the universe
of structural variations

© Discovering tens of thousands of variants previously missed, as
well as clarifying tens of thousands of false positives per sample

© Possible to rapidly characterize pan-genomes with >100 samples

© Throughput & accuracy rapidly improving, realtime direct alignment
of nanopore signal data

Beyond mere structural variation identification

..... towards “Rules of Life” interaction maps and beyond
0 Identify the specific pathways for many important traits

0 Discovery and dissection of cis-regulatory epistasis

O Analysis of epigenetic modifications

Q Engineering domestication traits in “wild” plants

Expect to see similar results in all other plant and animal species

~~~ Sergey Aganezov @ 7:50pm Cancer Session ~~~
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