100 Genomes in 100 Days: The Structural Variant Landscape of Tomato Genomes Michael Schatz

January 15, 2019 PAG2019 Bioinformatics Workshop

Tomato Domestication & Agriculture

Tomatoes are one of the most valuable crops in the world

- O Worldwide annual production >175 million tons & \$85B
- Major ingredient in many common foods:
 - Sauces, salsa, ketchup, soups, salads, etc

Tomatoes are an important plant model system

- Originally from South America, transported to Europe by early explorers in the 17th century, and then back to North America in 18th century
- Extensive phenotypic variation: >15,000 named varieties
 - Model for studying fruiting and flowering
- Member of important Solanaceae family
 - Potato, pepper, eggplant, tobacco, petunia, etc

Tomato Genomics and Genetics

Tomato Reference Genome published in May 2012

- International consortium from 14 countries requiring years of effort and millions of dollars
 - Sanger + 454 + fosmids + BAC-ends + genetic map + FISH
- 'Heinz 1706' cultivar (v3)
 - 12 chromosomes, 950 Mbp genome, diploid
 - 22,707 contigs, 133kbp contig N50, 80M 'Ns'
 - 20Mb on "chromosome 0"
- Resource for thousands of studies
 - Candidate SNPs for many traits identified through GWAS
 - Candidate genes and pathways through RNAseq
 - Extensive investment into agricultural traits:
 - ripening, flavor, fruit size, color, morphology

Structural Variations Are Drivers of Quantitative Variation

Recent results highlight structural variations to play a major role in phenotypic differences

- SV are any variants >50bp: insertions, deletions, inversions, duplications, translocations, etc
- Adds, removes, and moves exons, binding sites, and other regulatory sequences
- Notoriously difficult to identify using short reads: high false positive & false negative rate

Structural Variation Landscapes in Tomato Genomes and their role in Natural Variation, Domestication, and Crop Improvement

Zach Lippman CSHL / HHMI

Joyce Van Eck Boyce Thompson

Esther van der Knaap Univ. of Georgia

Fritz Sedlazeck Baylor

Sara Goodwin CSHL

Project overview

- 1. Select diverse samples
- 2. Long read sequencing
- 3. Per-sample SV identification
- 4. Pan-tomato SV landscape
- Identify and validate SVs associated with agricultural and phenotypic traits

~ Part I ~ Sample Selection

Tomato Population Genetics

More than 900 varieties of tomato and related species have been sequenced with short reads

- Most are between 20x and 40x coverage
- SNP-based phylogenetic tree shows 10 major clades

Initial examination of SVs

- Identify variants using an aggregation of three individual methods to improve sensitivity
 - Lumpy, Manta & Delly
- Consensus calls using SURVIVOR (Jeffares et al, Nature Communications, 2017)
 - Retain calls supported by \geq 2 callers
 - Reduces false-positives while not worsening false-negatives

Optimized Sample Selection

Our goal is to select the 100 samples that <u>collectively</u> capture the most diversity

- Short-read based SVs will under-sample variants but still represents relative diversity
- Selecting 100 at *random only recovers about 40%* of the total known diversity
- Optimal strategy is NP-hard using a setcover algorithm, we approximate using a greedy approach
 - Ranking samples by number of variants picks diverse samples, although tends to pick siblings (nearly duplicate samples)

SVCollector: Optimized sample selection for validating and long-read resequencing of structural variants Sedlazeck et al (2018) bioRxiv doi: https://doi.org/10.1101/342386

Optimized Sample Selection

SVCollector: Optimized sample selection for validating and long-read resequencing of structural variants Sedlazeck et al (2018) bioRxiv doi: https://doi.org/10.1101/342386

~ Part 2 ~ Long Read Sequencing

Nanopore Performance at CSHL

Sara Goodwin

Sequencing strategy

- Initial proposal called for mix of short, long, and linked read sequencing
- MinION and GridION became feasible spring/summer 2018
- Encouraging PromethION yields on test runs mid-summer 2018 motivated switch in strategy

Nanopore Performance at CSHL

Sara Goodwin

Nanopore Performance at CSHL

Sara Goodwin

Nanopore Read Lengths

Optimized Sequencing strategy

- © Fragmentation at 30kbp using the Megarupter
- 109 Ligation Sequencing Kit yields both long reads and high yield

Very long reads with PromethION

- Mean read length: 10kbp 20kbp
- Read length N50: 15kbp 30kbp
- Over 20x coverage of reads over 20kbp

Data Management

High throughput of PromethION has introduced some new IT challenges

- Upgraded the fiber connection between the sequencing lab and the data center
- O Substantial storage requirements
- Substantial load on filesystem to manage hundreds of millions of fast5 files

~ Part 3 ~ Structural Variation Identification

Structural Variation Identification

Two major strategies for detection

O Alignment-based detection

- Split-read alignment to detect the breakpoints of events
- Fast, accurately identifies most variants, including heterozygous variants
- Very long insertions may be incomplete

Assembly-based detection

- De novo assembly followed by whole genome alignment
- Can capture novel sequences and other complex variants
- Slow, demanding analysis, limited by contig length, heterozygous variants challenging

Genome structural variation discovery and genotyping

Alkan, C, Coe, BP, Eichler, EE (2011) Nature Reviews Genetics. May;12(5):363-76. doi: 10.1038/nrg2958.

Alignment Based Analysis

BWA-MEM

NGMLR: Dual mode scoring to accommodate indel errors plus SVs **CrossStitch:** Local re-assembly across variants to improve breakpoints

Accurate detection of complex structural variations using single molecule sequencing Sedlazeck, Rescheneder, et al (2018) Nature Methods. doi:10.1038/s41592-018-0001-7

De novo Assembly

Gold level assemblies with Canu

- Well-established, integrated correction & assembly
- Contig N50 sizes >10-fold better than reference
- Main challenge is speed
 - ~2 weeks per assembly on ~320 cores

Exploring faster options

- Miniasm (Li, *Bioinformatics*, 2016) runs in ~72 core hours (+1.5 days for consensus)
- Wtdbg2 (https://github.com/ruanjue/wtdbg2) runs in ~8 core hours (+1.5 days for consensus) although mixed results depending on sample
- Discussing cloud-enabled pipelines with DNAnexus

Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation Koren et al (2018) Genome Research. doi: 10.1101/gr.215087.116

RaGOO: Fast and accurate reference-guided scaffolding

Reference guided scaffolding

- O Use the reference genome as a "genetic map"
- Effective when sample is structurally similar to reference

Validation using Hi-C

Reference-guided scaffolding leads to more complete and more accurate chromosomes

Fast and accurate reference-guided scaffolding of draft genomes Alonge et al (2019) bioRxiv. https://www.biorxiv.org/content/early/2019/01/13/519637

RaGOO: Fast and accurate reference-guided scaffolding

Reference guided scaffolding

- Use the reference genome as a "genetic map"
- Effective when sample is structurally similar to reference

Validation using Hi-C

Reference-guided scaffolding leads to more complete and more accurate chromosomes

Mike Alonge Johns Hopkins University

Poster #PE0096

Fast and accurate reference-guided scaffolding of draft genomes Alonge et al (2019) bioRxiv. https://www.biorxiv.org/content/early/2019/01/13/519637

Assembly Based Analysis

RaGOO scaffolding yields essentially complete chromosomes

- Final polishing using Bowtie2 + Pilon
 - Substantially faster than Nanopolish, and modestly more accurate based on gene-analysis and alignment to reference
- O Gene annotations using MAKER

Identify structural variants using Assemblytics

- O Finds variants within and between alignments
- Especially important for large insertions of novel sequences
- Tens of thousands of SVs, widely distributed across chromosomes

Assemblytics: a web analytics tool for the detection of variants from an assembly Nattestad, M, Schatz, MC (2016) *Bioinformatics*. doi: 10.1093/bioinformatics/btw369

~ Part 4 ~ The Landscape of Structural Variation in Tomato Genomes

The landscape of structural variations

Landscape of the first 20 accessions

- Substantial variation between samples
 - 15 to 50 thousand structural variations each
 - Mostly insertions + deletions

Population Genetics

- O Most variants specific to 1 sample
- Many variant shared by multiple samples, including some in all 20

Identification of the ej2 Tandem Duplication

Validation of our first SV association

- Crosses of tomato plants with a highly desirable breeding trait (j2: jointless2) and a desirable domestication trait (ej2: an enhancer for j2) are typically poorly producing plants – *a negative epistatic interaction*
- However some breeding lines carry both alleles and yet have good yields through unknown means
 - One of our first samples was such a breeding line and revealed a 83kbp tandem duplication spanning ej2
 - Validated the duplication using Sanger, RNA-seq and quantitative genetics to conclude the duplication of the locus causes stabilization of branching and flower production
- Now able to use CRISPR/cas9 to overcome the negative epistatic interaction to improve fruit yields

Soyk et al (2019) Under Review

deletion

Identification of the ej2 Tandem Duplication

Validation of our first SV association

- Crosses of tomato plants with a highly desirable breeding trait (j2: jointless2) and a desirable domestication trait (ej2: an enhancer for j2) are typically poorly producing plants – *a negative epistatic interaction*
- O However some breeding lines carry both alleles and yet have good yields through unknown means
 - One of our first samples was such a breeding line and revealed a 83kbp tandem duplication spanning ej2
 - Validated the duplication using Sanger, RNA-seq and quantitative genetics to conclude the duplication of the locus causes stabilization of branching and flower production
- Now able to use CRISPR/cas9 to overcome the negative epistatic interaction to improve fruit yields

Soyk et al (2019) Under Review

Sebastian Soyk Cold Spring Harbor Laboratory

Summary & Future Work

High throughput long read sequencing is unlocking the universe of structural variations

- Discovering tens of thousands of variants previously missed, as well as clarifying tens of thousands of false positives per sample
- O Possible to rapidly characterize pan-genomes with >100 samples
- Throughput & accuracy rapidly improving, realtime direct alignment of nanopore signal data

Beyond mere structural variation identification

..... towards "Rules of Life" interaction maps and beyond

- O Identify the specific pathways for many important traits
- O Discovery and dissection of cis-regulatory epistasis
- Analysis of epigenetic modifications
- C Engineering domestication traits in "wild" plants

Expect to see similar results in all other plant and animal species

Acknowledgements

Schatz Lab **Mike Alonge Srividya** Ramakrishnan Sergey Aganezov Charlotte Darby Arun Das Katie Jenike Michael Kirsche Sam Kovaka T. Rhyker Ranallo-Benavide **Rachel Sherman** *Your Name Here*

Lippman Lab Sebastian Soyk Xingang Wang Zachary Lemmon **Cold Spring Harbor Laboratory** Sara Goodwin W. Richard McCombie **Baylor College of Medicine** Fritz Sedlazeck **Boyce Thompson** Joyce Van Eck **University of Georgia** Esther van der Knaap

Thank you! @mike_schatz http://schatz-lab.org

From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy Rang et al (2018) Genome Biology. https://doi.org/10.1186/s13059-018-1462-9

