# Reference-quality diploid genomes without *de novo* assembly

Michael Schatz

January 16, 2018 PAG Bioinformatics Workshop



@mike\_schatz / #PAGXXVI



De novo is necessary for the first genome of a species, but is it really necessary for genomes 2 through N?

- **I. De novo is slow:** Large inputs and intermediate files. Algorithms are complex to compare all the reads to each other. Mammalian genomes need thousands of core hours and terabytes of space
- **2.** De novo is demanding: Make the libraries just right, sequence the reads just right, set the parameters just right, launch and relaunch to optimize
- 3. De novo is unpredictable: Add a little more (or a little less) data, and your contig N50 drops in half. Errors creep in ranging from SNPs to SVs. Heuristics break when the data or genome structure are unexpected.
- **4.** De novo is just the beginning. Annotation from scratch is really hard, and to use it (variant analysis/selection analysis/regulatory analysis) you will probably need to align to a reference anyways.



### De novo is necessary for the first genome of a species, but is it really necessary for genomes 2 through N?



### **Reference-Guided Assembly**



### I. High quality reference

- Contig N50 over IMbp
- Scaffold N50 over 10Mbp
- High Quality Gene Annotation (See VGP definition)
- Your sample is sufficiently similar (~99% identity)



### 2. Sample specific data

- <u>SNPs and Indels</u>: Illumina-based (Illumina PE or IOX)
- <u>Structural Variants</u>: Long Reads (PacBio or ONT)
- <u>Phasing Data</u>: I0X and/or HiC; trios when available

### Data requirements similar to de novo, but less demanding, more accurate, and more predictable

### **Comparative Genome Assembly ("AMOScmp")** Pop et al (2004) Briefings in Bioinformatics. Sep;5(3):237-48.



















# Phasing Results



NA12878 Optimal phase block length increases with read length



Read length (log10 bp)

HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies Edge, P, Bafna, V, Bansal, V (2016) Genome Research. doi: 10.1101/gr.213462.116







### SVs using Short, Long and Linked Reads



#### Main Diagonal

Calls per tool

### **Outer triplets**

• Concordance by Technology

### Inner triplets

- Concordance by Assembly
- Concordance by Mappers

### **Overall:**

 Lonnnnnng reads give the most variants with the best concordance <sup>(3)</sup>



# NGMLR + Sniffles



### **BWA-MEM**:



### NGMLR:

| 195,235,300 kp 193,235,400 kp | 193,225,530 kp                 | - 805 bp | 193,235,716 bp |                |
|-------------------------------|--------------------------------|----------|----------------|----------------|
|                               |                                |          |                |                |
|                               | 22                             | 7        | II · I I I     |                |
|                               | - 215<br>- 224<br>- 224        | 1        |                | T THE          |
|                               |                                |          |                | -1 1<br>11-1 1 |
|                               |                                |          |                | · · I · · ·    |
|                               | 22                             |          |                |                |
|                               | - 22<br>- 224<br>- 225<br>- 21 |          |                |                |
|                               | 22                             | 7        |                | i da d         |
|                               | 113                            | 1        |                |                |
|                               | -11<br>-12<br>-12              |          |                | 111111-1       |
|                               |                                |          |                | I → I    -     |
|                               |                                | 7        |                | 1.1.10         |
|                               | - 128                          | 7        |                | -11 11         |
|                               |                                |          |                |                |
|                               | 22<br>221<br>- 221             | 1        |                |                |
|                               |                                | 7        |                |                |
|                               |                                |          | =              | 117 -          |
|                               |                                | 26       |                | 1              |
| an Tanàn ao Mandri P          |                                | 1        |                | I-I            |

NGMLR: Convex gap penalty to balance frequent small sequencing errors with larger SVs Sniffles: Scan within and between split reads to accurately find SVs (Ins, Del, Dup, Inv, Trans) Mendelian concordance >95%, experimental validation also very high

Accurate detection of complex structural variations using single molecule sequencing Sedlazeck, Rescheneder et al (2017) bioRxiv https://doi.org/10.1101/169557

# No more false positives!



Accurate detection of complex structural variations using single molecule sequencing Sedlazeck, Rescheneder et al (2017) bioRxiv https://doi.org/10.1101/169557

# No more false positives!



Accurate detection of complex structural variations using single molecule sequencing Sedlazeck, Rescheneder et al (2017) bioRxiv https://doi.org/10.1101/169557







### Local Assembly and SV Phasing

Transfer the phasing of the short read variants to the long reads The phased long reads allow the SVs to be phased



*Phase SVs*: Make sure SVs are associated with the correct haplotype *Local Assembly*: Refine sequence of insertions, resolve complex nested variants







### Assembling a "Perfect" Personalized Diploid Genome

Carefully "stitch" the phased variants into the reference genome at the right position to create a pair of phased chromosome fasta files



### Assembling a "Perfect" Personalized Diploid Genome

Carefully "stitch" the phased variants into the reference genome at the right position to create a pair of phased chromosome fasta files



### Assembling a "Perfect" Personalized Diploid Genome

Carefully "stitch" the phased variants into the reference genome at the right position to create a pair of phased chromosome fasta files



### Stitching based on AlleleSeq pipeline enhanced for SVs (Rozowsky et al, 2011)

• Maintains a mapping from reference to personal genome coordinates to make lift over of annotation straightforward to compute

### Using IOX + HiC + PacBio, assemble essentially perfect diploid human genomes with haplotypes spanning entire chromosomes

 Phased diploid genome can be aligned or aligned against just like a de novo genome assembly

# Applications

### **Expression & Regulation**



# Foundation for mapping functional data

- Discover novel genes and gene fusions
- Analyze differential expression in CNVs
- Discover new regulatory regions
- Analyze allele-specific expression

### **Population Genetics**



## Framework for GWAS of Structural Variations

- Identified SVs in >900 accessions using short reads
- Assembling the top 50 lines using long & linked reads
- Perform GWAS of breeding traits

### Polyploidy



# Studying heterozygosity in sugarcane

- Have a high quality PacBio-based assembly of POJ2878 using FALCON (140kbp N50)
- Developing new methods for phasing (9-14 copies of each chromosome)

### Reference-quality Genomes without de novo assembly

### De novo assembly is essential for exploring new species

• Reference-free or mapping to a distant reference is difficult to impossible

# But once the first genome of a species has been assembled, shouldn't the second genome be a little easier?

- Use the right combination of data to capture and phase all types of variants
- Overnight analysis to create a high quality personalized genome that are more accurate, more predictable, and easier to use than a de novo assembly
- The personalized diploid genome will be a platform for functional and evolutionary analysis in many species



# Acknowledgements

#### Schatz Lab

Mike Alonge Amelia Bateman Charlotte Darby Han Fang Michael Kirsche Sam Kovaka Laurent Luo Srividya Ramakrishnan T. Rhyker Ranallo-Benavide **\*Your Name Here\*** 

#### **Baylor Medicine**

Fritz Sedlazeck

#### **University of Vienna**

Arndt von Haeseler Philipp Rescheneder

### **DNAnexus** Maria Nattestad

#### **CSHL**

**Gingeras** Lab Jackson Lab Lippman Lab Lyon Lab Martienssen Lab McCombie Lab **Tuveson Lab** Ware Lab Wigler Lab

### **SBU**

Skiena Lab Patro Lab

#### GRC

**Roderic Guido** Alessandra Breschi Anna Vlasova

### Yale

Gerstein Lab

#### JHU

Battle Lab Langmead Lab Leek Lab Salzberg Lab Taylor Lab Timp Lab Wheelan Lab

### Cornell Susan McCouch Lyza Maron Mark Wright

### OICR

John McPherson Karen Ng **Timothy Beck** Yogi Sundaravadanam

**PacBio Greg Concepcion** 





National Human Genome Research Institute



SFARI SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE



ALFRED P. SLOAN FOUNDATION



# Thank you! @mike\_schatz