Advances in Genome Sequencing \& Assembly Michael Schatz

July I7, 2018
UCLA Computational Genomics Summer Institute

- @mike_schatz

Outline

I. Introduction to Genome Assembly

- Assembly by analogy

2. Practical Issues

- Coverage, read length, errors, and repeats

3. Research Projects

- Long read sequencing of breast cancer

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of $\underline{\text { A Tale of Two Cities }}$
- Text printed on 5 long spools

It was	theva	sbtet besinoestiritesaast	Walacheorstrof tifitess,eis, it	was the age off wisdom, i	it was the age of	iisborisalsness,	..

It was	t thaesbidst bésimostinite	, vitas thetweoustrof tiftess,	it was the age of	visudschonit, it axatshthegagof foofidmolistsness,	..

It	wast thassbtast besinoesjin		fimes, it was the age	f ofirsolschomit it asatsh thæg	nooficholissisness,

- How can he reconstruct the text?
-5 copies $\times 138,656$ words $/ 5$ words per fragment $=138 \mathrm{k}$ fragments
- The short fragments from every copy are mixed together
- Some fragments are identical

It was the best of
age of wisdom, it was
best of times, it was

it was the age of
it was the age of
it was the worst of

of times, it was the
of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst
was the age of wisdom,
was the age of foolishness,
was the best of times,
was the worst of times,
wisdom, it was the age
worst of times, it was

Greedy Reconstruction

```
It was the best of
    was the best of times,
the best of times, it
best of times, it was
    of times, it was the
    of times, it was the
    times, it was the worst
    times, it was the age
```

The repeated sequence make the correct reconstruction ambiguous

- It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem

de Bruijn Graph Construction

- $\mathrm{G}_{k}=(\mathrm{V}, \mathrm{E})$
- $V=$ Length-k sub-fragments
- $\mathrm{E}=$ Directed edges between consecutive sub-fragments
- Sub-fragments overlap by k-I words

Fragments $|\mathrm{f}|=5 \quad$ Sub-fragment $k=4 \quad$ Directed edges (overlap by $k-1$)

- Overlaps between fragments are implicitly computed

de Bruijn Graph Assembly

was the best of
the best of times,

After graph construction, try to simplify the graph as much as possible

Compacted de Bruijn Graph

The full tale

... it was the best of times it was the worst of times ...
... it was the age of wisdom it was the age of foolishness ...
... it was the epoch of belief it was the epoch of incredulity ...
... it was the season of light it was the season of darkness ...
... it was the spring of hope it was the winder of despair ...

Assembly Complexity

Finding possible assembly paths is easy!

- Eulerian tour in linear time \odot

Assembly Complexity

Finding possible assembly paths is easy!

- Eulerian tour in linear time ©

However, there is a astronemical genomical number of possible paths!

- Proportional to the product of the factorial of the degree of the nodes

Kingsford, Schatz, Pop (20I0) BMC Bioinformatics II:2I

- Alternative formulations related to the shortest-common-superstring problem are NP-hard

Computability of Models for Sequence Assembly Medvedev et al (2007) Algorithms in Bioinformatics. 978-3-540-74I26-8

Hopeless to figure out the whole genome/chromosome (with short reads): figure out the parts that you can

Contig N50

Def: 50% of the genome is in contigs as large as the N50 value

Example: I Mbp genome 50\%

A

$$
\mathrm{N} 50 \text { size }=30 \mathrm{kbp}
$$

B

N50 size $=3 \mathrm{kbp}$

Contig N50

Def: 50% of the genome is in contigs as large as the N50 value

Better N50s improves the analysis in every dimension

- Better resolution of genes and flanking regulatory regions
- Better resolution of transposons and other complex sequences
- Better resolution of chromosome organization
- Better sequence for all downstream analysis

Just be careful of N50 inflation!

- A very very very bad assembler in I line of bash:
- cat *.reads.fa > genome.fa

$$
\mathrm{N} 50 \text { size }=3 \mathrm{kbp}
$$

Outline

I. Introduction to Genome Assembly

- Assembly by analogy

2. Practical Issues

- Coverage, read length, errors, and repeats

3. Research Projects

- Long read sequencing of breast cancer

Assembly Applications

- Novel genomes

- Sequencing assays
- Structural variations
- Transcript assembly

Assembling a Genome

I. Shear \& Sequence DNA

2. Construct assembly graph from reads (de Bruijn / overlap graph)
...AGCCTAGGGATGCGCGACACGT
GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC
CAACCTCGGACGGACCTCAGCGAA...
3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

- \quad Short reads will have false overlaps forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Quality

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC,Witkowski, McCombie,WR (2012) Genome Biology. 12:243

Typical sequencing coverage

Contig \quad Reads
Imagine raindrops on a sidewalk
We want to cover the entire sidewalk but each drop costs $\$ 1$
If the genome is 100 Mbp , should we sequence 1 M 100 bp reads?

Ix sequencing

$2 x$ sequencing

Balls in Bins Total balls: 2000

$4 x$ sequencing

$8 x$ sequencing

Balls in Bins
Total balls: 8000

Poisson Distribution

The probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate and

$$
P(k)=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$ independently of the time since the last event.

Formulation comes from the limit of the binomial equation

Resembles a normal distribution, but over the positive values, and with only a single parameter.

Key properties:

- The standard deviation is the
- Fo coverage to 2 standard deviations? by a rivi, mar ursannuaver

Kmer-based Coverage Analysis

Even though the reads are not assembled or aligned (or reference available), Kmer counting is an effective technique to estimate coverage \& errors

Quake: quality-aware detection and correction of sequencing reads. Kelley, DR, Schatz, MC, Salzberg SL (20I0) Genome Biology. I I:R I I6

GenomeScope: Fast reference-free genome profiling from short reads http://qb.cshl.edu/genomescope/

Automatically estimate several genome properties from unassembled reads

- Genome size
- Repetitiveness
- Rate of heterozygosity
- Effective Coverage
- Sequencing Error Rate
- Rate of PCR Duplicates

Vurture et al. (2017) Bioinformatics. doi: https://doi.org/10.1093/bioinformatics/btx153

Unitigging / Unipathing

- After simplification and correction, compress graph down to its non-branching initial contigs
- Aka "unitigs","unipaths"

Why do unitigs / unipaths end?
(1) lack of coverage, (2) errors, (3) heterozygosity and (4) repeats

Repetitive regions

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$\left(\mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{k}}\right)^{\mathrm{N}}$ where I $\leq \mathrm{k} \leq 6$ CACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	Alu sequence ($\sim 280 \mathrm{bp})$ Mariner elements ($\sim 80 \mathrm{bp})$	13%
LINEs (Long Interspersed Nuclear Elements)	$\sim 500-5,000 \mathrm{bp}$	21%
LTR (long terminal repeat) retrotransposons	Tyl-copia,Ty3-gypsy, Pao-BEL $(\sim 100-5,000 \mathrm{bp})$	8%
Other DNA transposons Gene families \& segmental duplications		3%

- Over 50% of mammalian genomes are repetitive
- Large plant genomes tend to be even worse
- Wheat: 16 Gbp; Pine: 24 Gbp

Repeats and Coverage Statistics

- If n reads are a uniform random sample of the genome of length G, we expect $k=n \Delta / G$ reads to start in a region of length Δ.
- If we see many more reads than k (if the arrival rate is $>A$), it is likely to be a collapsed repeat

$$
\operatorname{Pr}(X-\text { copy })=\binom{n}{k}\left(\frac{X \Delta}{G}\right)^{k}\left(\frac{G-X \Delta}{G}\right)^{n-k} \quad A(\Delta, k)=\ln \left(\frac{\operatorname{Pr}(1-\text { copy })}{\operatorname{Pr}(2-\text { copy })}\right)=\ln \left(\frac{\frac{(\Delta n / G)^{k}}{k!} e^{\frac{-\Delta n}{G}}}{\frac{(2 \Delta n / G)^{k}}{k!} e^{\frac{-2 \Delta n}{G}}}\right)=\frac{n \Delta}{G}-k \ln 2
$$

The fragment assembly string graph
Myers, EW (2005) Bioinformatics. 2 I (suppl 2): ii79-85.

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
- Coverage gaps: especially extreme GC
- Conflicts: errors, repeat boundaries
- Use mate-pairs/linked-reads/HiC/ optical maps to resolve correct order through assembly graph
- Place sequence to satisfy the mate constraints
- Mates through repeat nodes are tangled
- Final scaffold may have internal gaps called
 sequencing gaps
- We know the order, orientation, and spacing, but just not the bases. Fill with Ns instead

Assembly Summary

Assembly quality depends on
I. Coverage: low coverage is mathematically hopeless
2. Repeat composition: high repeat content is challenging
3. Read length: longer reads help resolve repeats
4. Error rate: errors reduce coverage, obscure true overlaps

- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
- Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats \& other misassemblies
- Globally/Locally reassemble data from scratch with better parameters \& stitch the 2 assemblies together

Outline

I. Introduction to Genome Assembly

- Assembly by analogy

2. Practical Issues

- Coverage, read length, errors, and repeats

3. Research Projects

- Long read sequencing of breast cancer

Single Molecule Sequencing

TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG
 TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG

ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG

A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG

CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG
 C-ACCTTG-ATGT-AT-_CACTTGAAGAACAAGATTTTATTCCGCGCCCG

TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA
 T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA
-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA
 GAGGAGG---AA-----GAATATCTGAT-AAAGATTACAAATT-GAGTGA

ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT
 ACTAAATTCACAA-ATAATAACACTTTTAGACAAAATTGATGGGAAGGTT

TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA
 TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA

Sample of 100 k reads aligned with BLASR requiring $>100 \mathrm{bp}$ alignment Average overall accuracy 83.7\%: I I.5\% insertions, 3.4% deletions, I.4\% mismatch

Single Molecule Sequences

Consensus Accuracy and Coverage

Coverage can overcome random errors

- Dashed: error model from binomial sampling
- Solid: observed accuracy

$$
\text { CNSError }=\sum_{i-1-c<1 \mid}^{c}\binom{c}{i}(e)^{i}(1-e)^{n-i}
$$

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren et al (2012) Nature Biotechnology. doi:I O.IO38/nbt. 2280

FALCON-unzip Accuracy

Phased Diploid Genome Assembly with Single Molecule Real-Time Sequencing Chin et al (2016) Nature Methods. doi:10.1038/nmeth.4035.

"Corrective Lens" for Sequencing

(A few) Recent Long Read Assemblies

\#1mbctgclub

Long-read sequencing

 of breast cancer
SK-BR-3

Most commonly used Her2-amplified breast cancer

Can we resolve the complex structural variations, especially around Her2?
Recent collaboration between JHU, CSHL and OICR to de novo assemble and analyze the complete cell line genome with PacBio long reads

Structural Variation Analysis

Assembly-based

~ 11,000 structural variants 50 bp to 10 kbp

Split-Read based

~ 20,000 structural variants Including many inter-chromosomal rearrangements

NGMLR + Sniffles

BWA-MEM:

NGMLR:

NGMLR: Convex scoring model to accommodate many small gaps from sequencing errors along with less frequent but larger SVs

Accurate detection of complex structural variations using single molecule sequencing Sedlazeck, Rescheneder et al (2018) Nature Methods. doi:10.1038/s4I592-018-000I-7

Highlights

- Finding 10s of thousands of additional variants
- PCR validation confirms high accuracy of long reads
- Detect many novel gene fusions
- Identify early vs late mutations in the cancer

Figure 1. Variants found in 5 K -BR-3 with PacBio long-read sequencing. (4) Circos (Krgyinski et al. 2009) plot showing long-range (larger than 10 kbp of inter-chromosomal) variants found by 5niffes from split-read alignments, with read coverage shown in the outer track (5) Variant wize histogram of deletions and insertions from size 50 bp up to 1 kbp found by long-read (Sniffles) and short-read (\$URVIVOR 2-caller consensus) variant caling, showing similar size distributions for insertions and deletions from long reads but not for short readk, where invertions are greatly underrepresented. (C) Sniffles variant counts by type for variants above 1 kbp in sice, including translocations and inverted duplications.

Complex rearrangements and oncogene amplifications revealed by long-read DNA and RNA sequencing of a breast cancer cell line Nattestad et al. (2018) Genome Research. doi: IO.1 IOI/gr.23I 100.1 I7

Oxford Nanopore Sequencing

- Thumb drive sized sequencer powered over USB
- Capacity for 512 reads at once
- Senses DNA by measuring changes to ion flow

Nanopore Sequencing

G-tube sense/antisense

high molecular weight genomic DNA
2-minute centrifugation

 Adapter ligation

Nanopore Basecalling

- Hidden Markov model
- Only four options per transition
- Pore type $=$ distinct kmer length

- Form probabilistic path through measured states currents and transitions
- e.g. Viterbi algorithm

Originally HMM based base calling, quickly shifting to RNN approaches

Oxford Nanopore Sequencing

MinION

\$lk/instrument
~\$15k / human @ 50x
Long reads, Low throughput

PromethION

\$75k / instrument
~\$4k / human @ 50x Long reads, High throughput

Taking Nanopore Sequencing into the Clinic

\checkmark Stable Growth in 3D
\checkmark Recapitulate tumor pathology \& treatment response
\checkmark Maintenance of tissue/tumor heterogeneity
\checkmark "2017 Method of the Year" Nature Methods

Tumor organoids in culture

Plating on Matrigel
Add growth factors
 Health

Oxford Nanopore Sequencing Results

Tissue source impacts read length

Tissue source impacts yield per flow cell

Preliminary Structural Variations Analysis

	Total	Deletions	Duplications	Insertions	Inversions	Translocations
All SVs in normal	9816	5225	578	3727	130	156
All SVs in tumor	13737	7020	988	5292	202	235
SVs only in tumor (Also exclude NA12878)	3662	1805	420	1250	98	89

Preliminary Structural Variations Analysis

	Total	Deletions	Duplications	Insertions	Inversions	Translocations
All SVs in normal	9816	5225	578	3727	130	156
All SVs in tumor	13737	7020	988	5292	202	235
SVs only in tumor (Also exclude NA12878)	3662	1805	420	1250	98	89

In pursuit of perfect genome sequencing

New sequencing technologies combined with new algorithms are revealing a universe of new genomic variants to study

- Tens of thousands of SVs per person, many megabases of variation
- Identification of novel cancer drivers
- Identification of novel genetic risk factors
- Identification of novel isoforms and fusion genes
- Identification of novel tumor virus and transposable element insertions
- Identification of novel genomic and transcriptomic epigenetic modifications
- Enhanced study of tumor progression, allele-specific factors
- ...

http://schatz-lab.org

Computational Research Landscape

- Avoid
- New Illumina/PacBio base callers
- Entirely new genome assembler from scratch
- Good
- Alignment/Assembly/Analysis methods robust to errors, polyploidy, aneuploidy
- Use insights from long-reads to improve analysis of short-reads
- Best
- Synthesis of large numbers of samples ("pan-genome assembly") and/or multiple data types ("multi-omics")
- Prioritization and interpretation of variations

http://schatz-lab.org

REVIEWS

Piercing the dark matter: bioinformatics of long-range sequencing and mapping

Fritz J. Sedlazeck-', Hayan Lee- ${ }^{2}$, Charlotte A. Darby- ${ }^{3}$ and Michael C. Schatz ${ }^{\text {4* }}$

Abstract | Several new genomics technologies have become available that offer long-read sequencing or long-range mapping with higher throughput and higher resolution analysis than ever before. These long-range technologies are rapidly advancing the field with improved reference genomes, more comprehensive variant identification and more complete views of transcriptomes and epigenomes. However, they also require new bioinformatics approaches to take full advantage of their unique characteristics while overcoming their complex errors and modalities. Here, we discuss several of the most important applications of the new technologies, focusing on both the currently available bioinformatics tools and opportunities for future research.

Piercing the dark matter: bioinformatics of long- range sequencing and mapping Sedlazeck et al (2018) Nature Reviews Genetics. doi:IO.1038/s41576-018-0003-4

Acknowledgements

Schatz Lab

Mike Alonge
Amelia Bateman
Charlotte Darby
Han Fang
Michael Kirsche
Sam Kovaka
Laurent Luo
Srividya
Ramakrishnan
T. Rhyker

Ranallo-Benavide
Your Name Here

Baylor Medicine
Fritz Sedlazeck
University of Vienna
Arndt von Haeseler
Philipp Rescheneder
DNAnexus
Maria Nattestad

CSHL
Gingeras Lab
Jackson Lab
Lippman Lab
Lyon Lab
Martienssen Lab
McCombie Lab
Tuveson Lab
Ware Lab
Wigler Lab

SBU

Skiena Lab Patro Lab

GRC
Roderic Guido
Alessandra Breschi
Anna Vlasova
Yale
Gerstein Lab

JHU
Battle Lab
Langmead Lab
Leek Lab
Salzberg Lab
Taylor Lab
Timp Lab
Wheelan Lab
Cornell
Susan McCouch
Lyza Maron
Mark Wright

OICR

John McPherson
Karen Ng
Timothy Beck
Yogi Sundaravadanam

PacBio

Greg Concepcion

National Human Genome Research Institute

NATIONAL CANCER INSTITUTE

ALFRED P. SLOAN FOUNDATION

Biological Data Science

Single Cell | Personalized Medicine | Imaging | Machine Learning | Algorithmics | Tools, Infrastructure, \& Visualization

