Scikit-ribo - Accurate A-site prediction and robust modeling of translational control

Han Fang

February 12, 2016
AGBT
Acknowledgments

Lyon Lab
Max Doerfel
Yiyang Wu
Jonathan Crain
Jason O’Rawe

Schatz Lab
Fritz Sedlazeck
Tyler Garvin
James Gurtowski
Maria Nattestad
Srividya Ramakrishnan

Cold Spring Harbor Laboratory:
Yifei Huang
Noah Dukler
Adam Siepel
Melissa Kramer

Stony Brook University:
Eric Antoniou
Elena Ghiban
Stephanie Muller
Rob Patro
Central dogma of biology – Classic view

DNA \rightarrow RNA \rightarrow Protein

Replication: DNA → RNA

Transcription: RNA Polymerase

Translation: Ribosome
What is ribosome profiling (Riboseq)?

Calculate translational efficiency (TE)

Less efficient translation

![Less efficient translation diagram](image)

\[\log_2(TE) < 0 \]

Normal translation efficiency (TE)

![Normal efficiency diagram](image)

\[\log_2(TE) = 0 \]

More efficient translation

![More efficient translation diagram](image)

\[\log_2(TE) > 0 \]

\[
TE = \frac{\text{Riboseq rpkms}}{\text{RNAseq rpkms}}
\]
Hypothesis: TE distribution could be skewed by ribosome pausing events.

Ribosome footprints without bias

Ribosome footprints with pausing
Simulated *S. cerevisiae* data - TE distribution are negatively-skewed by ribosome pausing events

\[
\text{TE} = \frac{\text{Riboseq rpkm}}{\text{RNAseq rpkm}}
\]
Analytical Challenges

- Understand translational control
- Assay specific characteristics/biases (e.g., ribosome pausing)
- Actively translated codons

- How to accurately infer translation efficiency?
- How is Riboseq different from RNAseq?
- Where does the A-site locate on Riboseq reads?
Introducing scikit-ribo

- Ribosome A-site position prediction
- A-site codon localization
- Ribosome pausing site calling
- Translation efficiency inference
- Differential translation efficiency testing
What and where is the ribosome A-site?

Figure adapted from Ingolia et al. Science (2009)
How to predict A-site?

Training data and features:

Classifier and model tuning:

• SVM with RBF kernel (scikit-learn)
• 10 fold cross-validation for grid search
• Make predictions on all reads genome-wide
Scikit-ribo has much higher accuracy of identifying A-site than the previous method (0.86 vs. 0.64, 10-fold CV).
Scikit-ribo accurately predicted codon usage fraction and codon normalized TE.

Finding ribosome pausing sites (peaks) is hard. But it is easier after knowing the A-site location.

Q: how to robustly identify ribosome pausing sites while accounting for over-dispersion?
Ribosome pausing site identification by negative binomial mixture model

\[P(X_i|\pi_i, \mu_i, k_i, r_i) = \prod_j \pi_i NB(X_{ij}|\mu_i, r_i) + (1 - \pi_i) NB(X_{ij}|k_i\mu_i, r_i), \]

for gene i at position j, where \(k \geq 5 \)

\(H_0 : \pi = 1 \)
\(H_1 : \pi \neq 1 \)
Ribosome pausing site identification by negative binomial mixture model

\[P(X_i | \pi_i, \mu_i, k_i, r_i) = \prod_j \pi_i N B(X_{ij} | \mu_i, r_i) + (1 - \pi_i) N B(X_{ij} | k_i \mu_i, r_i), \]

for gene i at position j, where \(k \geq 5 \)

\(H_0 : \ \pi = 1 \)
\(H_1 : \ \pi \neq 1 \)

<table>
<thead>
<tr>
<th># genes</th>
<th># genes (rpkm > 100)</th>
<th># genes with pausing</th>
<th># ribosome pausing sites identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>6664</td>
<td>1252</td>
<td>94</td>
<td>180</td>
</tr>
</tbody>
</table>
mRNA with stronger secondary structure tend to have ribosome pausing events

PARS scores obtained from Kertesz et al. Nature (2010)
TE distributions are negatively-skewed in many studies. Over-structured mRNA show inflated TE.

Chi Square test p-value < \(2 \times 10^{-16}\)

Weinberg, Shah et al. (2015)
Summary

Discussed:
1) Introduce scikit-ribo for joint analysis of Riboseq & RNAseq data.
2) Learn from data itself to determine ribosome A-site location.
3) Reveal biases in Riboseq data due to ribosome pausing.
4) How Riboseq biases lead to issues with estimating TE.

Ongoing work:
1) Joint inference of codon elongation rates and protein TE.
2) Extend the ribosome pausing calling to a HMM based method.

https://github.com/hanfang/