Error Correction and Assembly of Single Molecule Sequencing Data

James Gurtowski
The advantages of SMRT sequencing
Oxford Nanopore MinION

- Thumb drive sized sequencer powered over USB
- Senses DNA by measuring changes to ion flow
- Reads both DNA Strands (2D)
Nanopore Basecalling

Basecalling currently performed at Amazon with frequent updates to algorithm
Our Data - Yeast W303

- **Mean: 50Mb**
- **30 Flowcells**
- **Mean Read Length:** ~6kb (10kb shear)
- **Best: 446Mb**
Nanopore Readlengths

- Mean: 5473bp
- Spike-in
- Noise
- Max: 146,992bp
- 8x over 20kb
- 41x over 10kbp
Nanopore Alignments

Alignment Statistics (BLASTN)
- Mean read length at ~7kbp
- Shearing targeted 10kbp
- 70k reads align (32%)
- 40x coverage

Mean: 6903bp

13.8x over 10kbp

1.8x over 20kb

Max: 50,900bp
Nanopore Accuracy

Alignment Quality (BLASTN)
Of reads that align, average ~64% identity
“2D base-calling” improves to ~70% identity

57% Mismatches
32% Deletions
11% Insertions
Nanopore Alignment Summary

32% of the data map using BLASTN

Full Length Alignments

Partial Alignments

Unaligned
Long Read Correction Algorithms

PBJelly

Gap Filling and Assembly Upgrade

English et al (2012)
PLOS One. 7(11): e47768

PacBioToCA & ECTools

Hybrid Error Correction

Nature Biotechnology. 30:693–700

HGAP & Quiver

LR-only Correction & Polishing

Chin et al (2013)
Nature Methods. 10:563–569

< 5x Long Read Coverage > 50x
NanoCorr: Nanopore-Illumina Hybrid Error Correction

1. BLAST Miseq reads to all raw Oxford Nanopore reads

2. Select non-repetitive alignments
 - First pass scans to remove “contained” alignments
 - Second pass uses Dynamic Programming (LIS) to select set of high-identity alignments with minimal overlaps

3. Compute consensus of each Oxford Nanopore read
 - Currently using Pacbio’s pbdagcon

![Graph showing read identity before and after correction](graph.png)

- **Mean:** 97%
- **Mean:** 64%
Long Read Assembly

S288C Reference sequence
• 12.1Mbp; 16 chromo + mitochondria; N50: 924kbp

Illumina MiSeq
30x, 300bp PE (Flashed)
Celera Assembler
• 6953 non-redundant contigs
• N50: 59kb >99.9% id

Oxford Nanopore
30x corrected reads > 6kb
NanoCorr + Celera Assembler
• 234 non-redundant contigs
• N50: 362kbp >99.78% id

Pacific Biosciences
25x corrected reads > 10kb
HGAP + Celera Assembler
• 21 non-redundant contigs
• N50: 811kb >99.8% id
Acknowledgements

Michael Schatz
Dick McCombie
Sara Goodwin
Schatz Lab