De novo assembly of complex genomes

Michael Schatz

Oct 3, 2013
Beyond the Genome

@mike_schatz
Assembling a Genome

1. Shear & Sequence DNA

2. Construct assembly graph from overlapping reads
 ...AGCCTAGGGATCGCGACACGT
 GGATCGCGACACGTGCATATCCGGTTTGGTCAACCTCGGACGGAC
 CAACCTCGGACGGACCTCAGCGAA...

3. Simplify assembly graph
Assembly Complexity
Assembly Complexity

[Diagram showing assembly complexity with segments labeled A, R, B, R, C, R, and an assembly sequence A → R → B → R → C → R.]
Ingredients for a good assembly

Read Length

Reads & mates must be longer than the repeats
- Short reads will have false overlaps forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Coverage

High coverage is required
- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Quality

Errors obscure overlaps
- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly
Hybrid Sequencing

Illumina
Sequencing by Synthesis

- High throughput (60Gbp/day)
- High accuracy (~99%)
- Short reads (~100bp)

Pacific Biosciences
SMRT Sequencing

- Lower throughput (1Gbp/day)
- Lower accuracy (~85%)
- Long reads (5kbp+)
SMRT Sequencing

Imaging of fluorescently phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

SMRT Sequencing Data

Sample of 100k reads aligned with BLASR requiring >100bp alignment

<table>
<thead>
<tr>
<th>Match</th>
<th>83.7%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertions</td>
<td>11.5%</td>
</tr>
<tr>
<td>Deletions</td>
<td>3.4%</td>
</tr>
<tr>
<td>Mismatch</td>
<td>1.4%</td>
</tr>
</tbody>
</table>
PacBio Error Correction: HGAP

- With 50-100x of Pacbio coverage, virtually all of the errors can be eliminated
 - Works well for Microbial genomes: single contig per chromosome routinely achieved
 - Difficult to scale up for use with eukaryotic genomes

Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data
Hybrid Error Correction: PacBioToCA

http://wgs-assembler.sf.net

1. Correction Pipeline
 1. Map short reads to long reads
 2. Trim long reads at coverage gaps
 3. Compute consensus for each long read

2. Error corrected reads can be easily assembled, aligned

Hybrid error correction and de novo assembly of single-molecule sequencing reads.
Improved Gene Reconstruction

FOXP2 assembled in a single contig in the PacBio parrot assembly

Hybrid error correction and de novo assembly of single-molecule sequencing reads.
Population structure in *Oryza sativa*

3 varieties selected for *de novo* sequencing

- High quality BAC-by-BAC reference
 - ~370 Mbp genome in 12 chromosomes
 - About 40% repeats:
 - Many 4-8kbp repeats
 - 300kbp max high identity repeat (99.99%)
 - Useful model for other cereal genomes

Garris et al. (2005)

Genetics 169: 1631–1638

IR64

indica
tropical japonica
aus
temperate japonica

aromatic (basmati)

DJ123
Nipponbare
PacBio Long Read Rice Sequencing

C1 Chemistry – Summer 2011
Median=639 Mean=824 Max=10,008

C2XL Chemistry – Summer 2012
Median=2231 Mean=3290 Max=24,405
Preliminary Rice Assemblies

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Contig NG50</th>
</tr>
</thead>
<tbody>
<tr>
<td>HiSeq Fragments</td>
<td>3,925</td>
</tr>
<tr>
<td>50x 2x100bp @ 180</td>
<td></td>
</tr>
<tr>
<td>MiSeq Fragments</td>
<td>6,332</td>
</tr>
<tr>
<td>23x 459bp</td>
<td></td>
</tr>
<tr>
<td>8x 2x251bp @ 450</td>
<td></td>
</tr>
<tr>
<td>“ALLPATHS-recipe”</td>
<td>18,248</td>
</tr>
<tr>
<td>50x 2x100bp @ 180</td>
<td></td>
</tr>
<tr>
<td>36x 2x50bp @ 2100</td>
<td></td>
</tr>
<tr>
<td>51x 2x50bp @ 4800</td>
<td></td>
</tr>
<tr>
<td>PBeCR Reads</td>
<td>50,995</td>
</tr>
<tr>
<td>19x @ 3500 ** MiSeq for correction</td>
<td></td>
</tr>
</tbody>
</table>

In collaboration with McCombie & Ware labs @ CSHL
Assembly Coverage Model

Simulate PacBio-like reads to predict how the assembly will improve as we add additional coverage.

Only 8x coverage is needed to sequence every base in the genome, but 40x improves the chances repeats will be spanned by the longest reads.

Assembly complexity of long read sequencing
Enhanced PacBio Error Correction

PacBioToCA fails in complex regions
1. Simple Repeats – Kmer Frequency Too High to Seed Overlaps
2. Error Dense Regions – Difficult to compute overlaps with many errors
3. Extreme GC – Lacks Illumina Coverage
Error Correction with pre-assembled Illumina reads

https://github.com/jgurtowski/pbtools

Short Reads -> Assemble Unitigs -> Align & Select - > Error Correct

Unitigs:
High quality contigs formed from unambiguous, unique overlaps of reads
Each read is placed into a single unitig

Can Help us overcome:
1. Simple Repeats – Kmer Frequency Too High to Seed Overlaps
2. Error Dense Regions – Difficult to compute overlaps with many errors
Preliminary Rice Assemblies

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Contig NG50</th>
</tr>
</thead>
<tbody>
<tr>
<td>HiSeq Fragments</td>
<td>3,925</td>
</tr>
<tr>
<td>50x 2x100bp @ 180</td>
<td></td>
</tr>
<tr>
<td>MiSeq Fragments</td>
<td>6,332</td>
</tr>
<tr>
<td>23x 459bp</td>
<td></td>
</tr>
<tr>
<td>8x 2x251bp @ 450</td>
<td></td>
</tr>
<tr>
<td>“ALLPATHS-recipe”</td>
<td>18,248</td>
</tr>
<tr>
<td>50x 2x100bp @ 180</td>
<td></td>
</tr>
<tr>
<td>36x 2x50bp @ 2100</td>
<td></td>
</tr>
<tr>
<td>51x 2x50bp @ 4800</td>
<td></td>
</tr>
<tr>
<td>PBeCR Reads</td>
<td>50,995</td>
</tr>
<tr>
<td>19x @ 3500 ** MiSeq for correction**</td>
<td></td>
</tr>
<tr>
<td>Enhanced PBeCR</td>
<td>155,695</td>
</tr>
<tr>
<td>19x @ 3500 ** MiSeq for correction**</td>
<td></td>
</tr>
</tbody>
</table>

In collaboration with McCombie & Ware labs @ CSHL
P5-C3 Chemistry Read Lengths

Throughput: ~ 350-400 Mb

Read Length (bp)

P5-C3 8,500 bp

P4-C2

C2-C2

ECR2

FCR

LPR

Early chemistries

2008 2009 2010 2011 2012 2013

2008 2009 2010 2011 2012 2013

8,500 bp
De novo assembly of Arabidopsis

A. thaliana Ler-0 sequenced at PacBio

- Sequenced using the latest P4 enzyme and C2 chemistry
- Size selection using an 8 Kb to 50 Kb elution window on a BluePippin™ device from Sage Science
- Total coverage >100x

Genome size: 124.6 Mb
GC content: 33.92%
Raw data: 11 Gb
Assembly coverage: 15x over 9kbp

Sum of Contig Lengths: 149.5Mb
Number of Contigs: 1788
Max Contig Length: 12.4 Mb
N50 Contig Length: 8.4 Mb
Assembly Complexity of Long Reads
Summary

• Hybrid assembly let us combine the best characteristics of 2nd and 3rd gen sequencing
 – Better repeat resolution and error correction by pre-assembling Illumina reads into unitigs

• Long reads and good coverage are the keys to a high quality de novo assembly
 – Single contig de novo assemblies of entire microbial chromosomes are now routine
 – Single contig de novo assemblies of entire plant and animal chromosomes on the horizon

• We are starting to apply these technologies to discover significant biology that is otherwise impossible to measure
 – Expect to see results in smaller genomes scale up over the next few years
Acknowledgements

Schatz Lab
Giuseppe Narzisi
Shoshana Marcus
James Gurtowski
Srividya
Ramakrishnan
Hayan Lee
Rob Aboukhalil
Mitch Bekritsky
Charles Underwood
Tyler Gavin
Alejandro Wences
Greg Vurture
Eric Biggers
Aspyn Palatnick

CSHL
Hannon Lab
Gingeras Lab
Iossifov Lab
Levy Lab
Lippman Lab
Lyon Lab
Martienssen Lab
McCombie Lab
Ware Lab
Wigler Lab

IT Department

NBACC
Adam Phillippy
Sergey Koren

SFARI
National Human Genome Research Institute
U.S. Department of Energy
NSF
Thank You!

http://schatzlab.cshl.edu
@mike_schatz