

Hybrid De Novo Assembly of Eukaryotic Genomes

James Gurtowski Dr. Michael Schatz Cold Spring Harbor Laboratory

Assembly of Rice Genome Size: 400MB

Assembler	Sequencing Data	N50 Contig
ALLPATHS	60x 101bp Illumina PE (180bp insert) 2k jump 5k jump	21kb
Celera	28x Flashed MiSeq 250 PE	4.5kb
Celera	19x Error Corrected Pacbio -pacbioToCA with flashed MiSeq	34kb

Collaboration with McCombie Lab (CSHL) and Pacific Biosciences

PacBio Error Correction

http://wgs-assembler.sf.net

- I. Correction Pipeline
 - I. Map short reads to long reads
 - 2. Trim long reads at coverage gaps
 - 3. Compute consensus for each long read

2. Error corrected reads can be easily assembled, aligned

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) *Nature Biotechnology*. doi:10.1038/nbt.2280

Assembly Coverage Model in Rice

Simulate perfect reads from reference genome with Pacbio read length distribution

10000

0

5000

Coverage

Assembly complexity of long read sequencing Marcus, S, Lee, H, et al. (2013) In preparation

PacbioToCA Splits Reads

Position Specific Coverage

PacbioToCA splits reads at low coverage assuming they are adapters left over from the primary analysis pipeline

Has MaxGap Parameter: Do not split reads at low coverage. Suggested setting: 1500bp

Rice Assembly

Assembler	Sequencing Data	N50 Contig
ALLPATHS	60x 101bp Illumina PE (180bp insert) 2k jump 5k jump	21kb
Celera	28x Flashed MiSeq 250 PE	4.5kb
Celera	19x Error Corrected Pacbio -pacbioToCA with flashed MiSeq -maxGap 1500	34kb 58kb

What are these low coverage regions?

Low Coverage Regions

- 1. Simple Repeats Kmer Frequency Too High to Seed Overlaps
- 2. GC Rich Regions Known Illumina Bias

3. Error Dense Regions – Difficult to compute overlaps with many errors

Position Specific Coverage and Error Rate

Read Position

Correction with Unitigs

Unitigs: High quality contigs formed from unambiguous, unique overlaps of reads

Can Help us overcome:

- **1.** Simple Repeats Kmer Frequency Too High to Seed Overlaps
- 2. GC Rich Regions Known Illumina Bias
- 3. Error Dense Regions Difficult to compute overlaps with many errors

Celera guarantees all reads are incorporated into a unitig

How Can We Align Unitigs?

Most Aligners Ask:

Where in the genome did this read come from? Blasr, Bowtie2, BWA, BLAST

We are looking for the set of Unitigs that came from the same genomic position as the Pacbio Read.

MUMmer/Nucmer

1. Features All-vs-All Alignments

2. Delta-Filter

- Dynamic Programming To Optimize layout of Unitigs with respect to PB Read

3. Show-Snps

- Outputs differences between Pacbio Read and Unitig

Fast algorithms for large-scale genome alignment and comparison. Delcher AL, Phillippy A, Carlton J, Salzberg SL, Nucleic Acids Res. 2002 Jun 1;30(11):2478-83.

Delta-Filter

Uses Dynamic Programming (Longest Increasing Subset) to find the longest mutually consistent subset of unitigs with respect to the Pacbio Read

Pipeline Workflow

Note: Reads are never split or trimmed

Results

Assembler	Sequencing Data	N50 Contig
ALLPATHS	101bp Illumina PE (180bp insert) 2k jump 5k jump	21kb
Celera	28x Flashed MiSeq 250 PE	4.5kb
Celera	19x Error Corrected Pacbio -pacbioToCA pipeline with -flashed MiSeq library -maxGap=1500	34kb 58kb
Celera	19x Error Corrected Pacbio -New Pipeline -flashed MiSeq for Unitig generation	155kb

Take Home Points from new Pipeline

- Aligning unitigs from Illumina assemblies instead of raw Illumina reads.
 - Repeats are compressed in Unitigs
 - Alignment more tractable
 - Unitigs help span clusters of errors
- Reads are never split
 - Leverage Celera Assembler
 - Overlap Based Trimming
 - Chimera Detection and Splitting

Assembly complexity of long read sequencing Marcus, S, Lee, H, et al. (2013) *In preparation*

Acknowledgments

Schatz Lab

Michael Schatz Shoshana Marcus Hayan Lee Alejandro Wences

<u>CSHL</u> McCombie Lab

