IT Considerations: Hurdles and Solutions
Michael Schatz

April 29, 2013
Developing a Neuroscience Consortium
The biggest IT challenge is managing diversity

Corollary: There is no single magic bullet
Outline

- Samples
 - Institutions
 - Instruments
 - Algorithms
De novo genetics of autism

Sequencing of 343 families from the Simons Simplex Collection

- Parents plus one child with autism and one non-autistic sibling

- Chose to do whole exome sequencing to balance costs with genome coverage

- Discovered significant enrichment in de novo likely gene killing mutations

De novo gene disruptions in children on the autism spectrum
Samples

- **Organisms**
 - Humans, Animal models, Others?
 - Different scales, complexity, genome structures

- **Genetics**
 - Genome, Exome, Transcriptome, Methylome, etc
 - LIMS, Metadata of sample treatment

- **Phenotypes and Environments**
 - Behavior, growth, response to treatments, etc
 - Ontologies, Qualitative/Quantitative scoring

- **Populations**
 - Large numbers, different conditions, timeseries
 - Database of individuals, privacy, access control

- **Sample types**
 - Gross tissue, single tissue, single cell, single molecule
 - Sample tracking errors, QA/QC
Cost of Sequencing

NHGRI: DNA Sequencing Costs
http://www.genome.gov/sequencingcosts/
Sequencing Centers

Worldwide capacity exceeds 15Pbp/year

Next Generation Genomics: World Map of High-throughput Sequencers
http://omicsmaps.com/
Instruments

- **Sequencing Platforms**
 - Illumina/Life/Ion/PacBio/Moleculo/Oxford Nanopore

- **Phenotyping Platforms**
 - Animal Tracking, Growth Tracking, Cell Tracking

- **Scale**
 - 1 instrument ~100Gbp / day;
 - Institute: 1Tb/day;
 - Worldwide: 15Pb/year
 - Compression: Precious samples to routine analysis

- **Dispersed Resources**
 - Not organized around a few large collectors
 - Variable quality

- **Rapidly changing landscape**
 - Each instrument has different characteristics and error models that need to be modeled and corrected
Genomics Applications

Alignment & Variations

De novo Assembly

Differential Analysis

Phylogeny & Modeling
Jnomics: Cloud-scale genomics
James Gurtowski, Matt Titmus, Michael Schatz

- Rapid parallel execution of NGS analysis pipelines
 - FASTX, BWA, Bowtie, Novoalign, SAMTools, Hydra
 - Population analysis: Clustering, GWAS, Trait Inference
 - Integrate compute and storage resources together
- 200-fold performance gains analyzing 1TB genetic data

Answering the demands of digital genomics
Algorithms

Applications
- De novo assembly, Variant Detection, Phylogenies
- Differential Expression, Correlations
- Integration, Modeling, Machine Learning

Requirements
- High memory/High CPU/High IO/High throughput
- Visualization & user friendliness

Integration
- Federation or mirroring of data
- Monitoring data quality; IDR
- Rich resources in some species/diseases, less so in others

Workflows
- Provenance, reproducible workflows
- Rapidly changing best practices
Sequencing Centers

Nearly 1000 sequencing centers worldwide

Next Generation Genomics: World Map of High-throughput Sequencers
http://omicsmaps.com/
Institutional

- **IT Resources**
 - Network; Storage; Cores; HVAC; Power
 - Parallel Computing is hard

- **Expertise**
 - Alg Developers/Expert users/End users
 - Quantitative Education is hard

- **Data Reuse**
 - Moving large amounts of data is hard
 - Data quality becomes essential

- **Collaborative projects**
 - How do we coordinate/communicate resources
 - Cross-institution access and privacy requirements

- **Data are complex, requiring deep understanding**
 - Reinventing the wheel is (generally) okay, because we all need slightly different wheels
Summary

• Potential scale of data is enormous
 – Parallel computing aka distributed computing
 aka cloud computing may be our only hope for
 keeping up with the pace of advance
 – Move code to data whenever possible

• Managing the diversity of projects is the biggest challenge
 – Certain applications are common, but a long tail
 of important, but lesser used ones
 – Landscape is extremely dynamic with new
 instruments and algorithms released every day

• Key to success is a focused vision.
 – Integrate resources into the existing ecosystem
 – What are the incentives and enforcements available?
Thank You

http://schatzlab.cshl.edu/
@mike_schatz