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Assembling a Genome 

2. Construct assembly graph from overlapping reads 

…AGCCTAGACCTACAGGATGCGCGACACGT 

              GGATGCGCGACACGTCGCATATCCGGT… 

3. Simplify assembly graph 

 1. Shear & Sequence DNA 

4. Detangle graph with long reads, mates, and other links 



Assembly Applications 
Novel genomes 

Metagenomes 

Sequencing assays 
•  Transcript assembly 
•  Structural variations 
•  Haplotype analysis 
•  … 



Algorithms Overview 

1.  micro- 
–  Microsatellite mutations 
–  Haplotype Microassembly 

 

2.  mega- 
–  Genome Dark Matter 
–  Cloud-scale Genome analysis 
–  Single Molecule Sequencing & Assembly 

3.  meta- 
–  Assembly Forensics & Metassembly 



micro- 



MicroSeq: Microsatellite Analysis 

•  Highly variable simple sequence repeats 
–  …GCACACACACAT… = …G(CA)5T…  
–  Mutate by slippage during replication, creating indels  
–  High mutation rate makes it a useful marker for 

inferring phylogeny, associated with many diseases 
 
 

•  Genotyping with MicroSeq: 
1.  Rapidly detect MS in short reads 
2.  Map reads using a new MS-mapper 
3.  Analyze profiles across populations 

•  Currently looking at de novo mutations 
associated with autism 

M. Bekritsky, J. Troge, D. Levy, M. Wigler, M. Schatz 

REF:%ATGACTAGCCCCCCCCCCTGTACGATTTCG%
CTAGCCCCC*****TGTACG%
%TAGCCCCCCCCCCTG%
%%AGCCCCC*****TGTACGAT%
%%%GCCCCCCCCCCTGTA%

CTAGCCCCCTGTACG%
TAGCCCCCCCCCCTG%
AGCCCCCTGTACGAT%
GCCCCCCCCCCTGTA%

Map  

Profile 



•  Use assembly techniques to identify 
complex variations from short reads 
–  Improved power to find indels 
–  Trace candidate haplotypes sequences as paths 

through assembly graphs 

G. Narzisi, D. Levy, I. Iossifov, J. Kendall, M. Wigler, M. Schatz 

Scalpel: Haplotype Microassembly 

Ref:     ...CACAGGATCCACCTTTCTCAAAGACCCAGGATCCTCCTTCCTCGGTGACACTGTATACGTC... !
!

Father:  ...CACAGGATCCACCTTTCTCAAAGACCCAGGATCCTCCTTCCTCGGTGACACTGTATACGTC... [cov:19.5]!
!
Mother_1:...CACAGGATCCACCTTTCTCAAAGACCCAGGATCCTCCTTCCTCGGTGACACTGTATACGTC... [cov:19.4]!
Mother_2:...CACAGGATCCACCTTT------------------------CTTGGTGACACTGTATACGTC... [cov:21.5]!
!
Aut_2:   ...CACAGGATCCACCTTTCTCAAAGACCCAGGATCCTCCTTCCTCGGTGACACTGTATACGTC... [cov:28.2]!
Aut_1:   ...CACAGGATCCACCTTT------------------------CTTGGTGACACTGTATACGTC... [cov:33.3]!
!

Sib_1:   ...CACAGGATCCACCTTTCTCAAAGACCCAGGATCCTCCTTCCTCGGTGACACTGTATACGTC... [cov:19.4]!
Sib_2:   ...CACAGGATCCACCTTT------------------------CTTGGTGACACTGTATACGTC... [cov:21.5]!
!
!

 24 bp heterozygous indel at chr5:176026122 GPRIN1 



mega- 



Genomic Dark Matter 
Hayan Lee, Michael Schatz 

Genomic Dark Matter: The reliability of short read mapping illustrated by the GMS. 
Lee, H., Schatz, M.C. (2011) Under Review 

•  Short read mapping is a essential for identifying 
mutations in the genome 
–  Not every base of the genome can mapped 

equally well, especially because of repeats 
 

•  Introduced a new probabilistic metric - the 
Genome Mappability Score - that quantifies 
how reliably reads can be mapped to every 
position in the genome 
–  We have little power to measure 11-13% of the 

human genome, including of known clinically 
relevant variations 

–  Errors in variation discovery are dominated by 
false positives, especially in low GMS regions 

High GMS 

Lo GMS 



!  Rapid parallel execution of NGS analysis pipelines 
!  FASTX, BWA, Novoalign, SAMTools, Hydra 

!  Sorting, merging, filtering, selection, of BAM, SAM, BED, fastq 
 

!  Case study: Structural variations in esophageal cancer 

Jnomics: Cloud-scale genomics 
Matt Titmus, James Gurtowski, Michael Schatz 

Fastq 

BWA 

Filter 

Novo 

Hydra 

Standard Jnomics 
Fastq 

BWA 

Filter 

Novo 

Hydra 

BWA BWA 

Filter Filter 

Novo Novo 

Answering the demands of digital genomics 
Titmus, M.A.., Schatz, M.C.. (2011) Under Review 
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http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf 

Imaging of florescent phospholinked labeled nucleotides as they are incorporated 
by a polymerase anchored to a Zero-Mode Waveguide (ZMW). 

Pacific Biosciences RS 
Single Molecule Real Time (SMRT) Sequencing 



SMRT Read Types 

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf 

•  Standard sequencing 
–  Long inserts so that the polymerase can synthesize along a single strand  

•  Circular consensus sequencing 
–  Short inserts, so polymerase can continue around the entire SMRTbell multiple 

times and generate multiple sub-reads from the same single molecule. 

•  Strobe sequencing 
–  Very long inserts, alternate the lasers in the instrument between on and off. On 

periods generate strobe sub-reads and the off periods determine the length of the 
spacing between, known as strobe advance 



Read Quality 
TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG!
||||||||||||||||||||||||| ||||||| |||||||||||| |||!
TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG!
!
ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG!
| |||||| ||||||||||||| |||| | |||||| |||||| ||||||!
A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG!
!
CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG!
| |||||| |||| ||  ||||||||||||||||||||||||||||||||!
C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG!
!
TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA!
| ||||||| |||||||||||||| || ||    |||||||||| |||||!
T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA!
!
-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA!
 ||||||   ||     |||||||| || |||||||||||||| || |||!
GAGGAGG---AA-----GAATATCTGAT-AAAGATTACAAATT-GAGTGA!
!
ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT!
||| ||||||||| | ||||||||||||| ||| ||||||| |||| |||!
ACTAAATTCACAA-ATAATAACACTTTTAGACAAAATTGATGGGAAGGTT!
!
TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA!
|| ||||||||| ||||||| ||| |||| |||||| ||||| |||||||!
TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA!
!
ATCCAGTGGAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG!
||||||| |||||||||  |||||| ||||| ||||||||||||||||||!
ATCCAGT-GAAAATATA--TTATGC-ATCCA-GAACTTATTCACAATTAG!
!

Sample of 100k reads aligned with BLASR requiring >100bp alignment 
Average overall accuracy: 83.7%, 11.5% insertions, 3.4% deletions, 1.4% mismatch 

Yeast  
(12 Mbp) 

 

65 SMRT cells  
734,151 reads after filtering 

Mean: 642.3 +/- 587.3  
Median: 553 Max: 8,495 
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1.  Correction Pipeline 
1.  Map short reads (SR) to long reads (LR) 
2.  Trim LRs at coverage gaps 
3.  Compute consensus for each LR 

2.  Co-assemble corrected LRs and SRs 
–  Celera Assembler enhanced to support 32 Kbp reads 

3.  Error corrected reads can be easily assembled, aligned 

PacBio Error Correction & Assembly 

Hybrid error correction and de novo assembly of single-molecule sequencing reads. 
Koren, S, Schatz, MC, Walenz, BP, Martin, J, Howard, J, Ganapathy, G, Wang, Z, Rasko, DA, 
McCombie, WR, Jarvis, ED, Phillippy, AM. (2011) Under Review 

http://wgs-assembler.sf.net 



Error Correction Results 

Correction results of 20x PacBio coverage of E. coli K12 corrected using 50x Illumina 



Celera Assembler 

1.  Pre-overlap 
–  Consistency checks 
 

2.  Trimming 
–  Quality trimming & partial overlaps 

3.  Compute Overlaps 
–  Find high quality overlaps 

4.  Error Correction 
–  Evaluate difference in context of 

overlapping reads 

5.  Unitigging 
–  Merge consistent reads 

6.  Scaffolding 
–  Bundle mates, Order & Orient 

7.  Finalize Data 
–  Build final consensus sequences 

 

http://wgs-assembler.sf.net 



Assembly Results 

SMRT-hybrid assembly results of 50x PacBio corrected coverage of E. coli K12 
Long reads lead to contigs over 1Mbp 



Hybrid Assembly Results 

Hybrid assembly results using error corrected PacBio reads 
Meets or beats Illumina-only or 454-only assembly in every case 



Transcript Alignment 

•  Long-read single-molecule sequencing has potential to directly 
sequence full length transcripts 
–  Raw reads and raw alignments (red) have many spurious indels inducing 

false frameshifts and other artifacts 
–  Error corrected reads almost perfectly match the genome, pinpointing 

splice sites, identifying alternative splicing 

•  New collaboration with Gingeras Lab looking at splicing in human 



meta- 



2011: Year of the Assembly Bakeoff 

Assemblathon 1: A competitive assessment of de novo short read assembly methods.  
Earl, DA et al. (2011) Genome Research. In press. 

GAGE: A critical evaluation of genome assemblies and assembly algorithms. 
Salzberg, SL et al. (2011) Genome Research. In press. 

•  Simulated genome distantly 
related to human chr13 

•  17 labs, 50+ assemblies 

•  4 real genomes ranging from bacteria 
to individual human chromosome 

•  Internal evaluation of 8 assemblers 



Assemblathon Results 

Mis-assembly Markers 



Final Rankings 

•  SOAPdenovo and ALLPATHS came out neck-and-neck followed closely 
behind by SGA, Celera Assembler, and ABySS 

•  My recommendation for “typical” short read assembly is to use ALLPATHS 



Assemblathon,2,

•  Real%sequence%data,%de#novo%assembly%

•  Step%1:%Apply%best%prac7ces%from%Assemblathon%1%
•  Step%2:%Add%secret%weapon%for%winning…%

Images%from%Assemblathon%



Assembly Forensics Forensics  

Computationally scan an assembly for mis-assemblies. 
–  Data inconsistencies are indicators for mis-assembly 
–  Some inconsistencies are merely statistical variations 

AMOSvalidate 
1.  Load Assembly Data into Bank 
2.  Analyze Mate Pairs & Libraries 
3.  Analyze Depth of Coverage 
4.  Analyze Read Alignments 
5.  Analyze Read Breakpoints 
6.  Load Mis-assembly Signatures into Bank 

AMOS 
Bank 

Genome Assembly forensics: finding the elusive mis-assembly. 
Phillippy, AM, Schatz, MC, Pop, M. (2008) Genome Biology 9:R55. 



Mis-assembly types 

Correct 

Mis-assembly 

Compression 

A R B R 

A R B 

Expansion 

A R B R 

A R B R R 

Inversion 

A R C R B 

A R C R B 

Rearrangement 

A R B R C R D 

A R C R B R D 

Correct 

Mis-assembly 

Basic mis-assemblies can be combined into more complicated patterns: 
Insertions, Deletions, Giant Hairballs 



Mate Evaluation Forensics  

•  Correct: mates have expected orientation and separation 

•  Mis-assembled: mates have incorrect orientation and separation 

•  Slightly compressed/expanded mates are expected because 
mates are sampled from a distribution of fragments 



Compression/Expansion Statistic Forensics  

2kb 4kb 6kb 

8 inserts: 3kb-6kb 

Local Mean: 4048 

C/E Stat:  (4048-4000)   = +0.33 

                (400 / √8)  

Near 0 indicates overall happiness 

0kb 
Library size distribution 

Mean: 4000, SD: 400 



Forensics  

8 inserts: 3.2 kb-4.8kb 

Local Mean: 3488 

C/E Stat:  (3488-4000)   = -3.62 

                (400 / √8)  

C/E Stat ≤ -3.0 indicates Compression 

2kb 4kb 6kb 0kb 

Hidden Compression 

Library size distribution 
Mean: 4000, SD: 400 



Real Mis-assembly 

Hawkeye & AMOS: Visualizing and assessing the quality of genome assemblies 
Schatz, M.C. et al. (2011) Briefings in Bioinformatics. In Press. 

Forensics  

Truth: 

Mis-assembled: 



Assemblathon%2%

•  Real%sequence%data,%de#novo%assembly%

•  Step%1:%Apply%best%prac7ces%from%Assemblathon%1%
•  Step%2:%Add%secret%weapon%for%winning…%

Images%from%Assemblathon%



Assemblathon 2: Metassembly 

ALLPATHS-
LG 

SOAPdenovo 
+ FLASH 
+ Quake 
+ AMOS 

Scaffold N50: 285,413 
#>1000:   29,119 

Contig N50:     1,607 
#>1000: 218,643 

Scaffold N50: 3,710,017 
#>1000:        2,791 

Contig N50:  20,183 
#>1000:  68,591 

CE Threshold:     3 
Mis-assemblies fixed:   28 

 

Gaps closed: 595 
Extra bases: 529kbp 

Paul Baranay, Scott Emrich, Michael Schatz 



Summary 
Assembly is a powerful tool for analyzing sequences, and is moving 
to increasingly more complex genomes and data types. 

•  Microassembly is a powerful tool needed to fully 
understand the genetics of autism and other 
diseases. 

 
 

•  A global analysis of the genome requires new 
statistics and computational methods to 
understand the patterns that we observe. 
 
 

•  Metassembly lets us maximize connectivity 
without sacrificing the quality of a de novo 
assembly. 
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