Applications of micro-, mega-, and meta- assembly Michael Schatz

Dec. 9, 2011 CSHL In house

Schatz Lab Overview

Assembling a Genome

2. Construct assembly graph from overlapping reads

...AGCCTAGACCTACAGGATGCGCGACACGT GGATGCGCGACACGTCGCATATCCGGT...

3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Assembly Applications

Novel genomes

Metagenomes

Sequencing assays

- Transcript assembly
- Structural variations
- Haplotype analysis

Algorithms Overview

- I. micro-
 - Microsatellite mutations
 - Haplotype Microassembly
- 2. mega-
 - Genome Dark Matter
 - Cloud-scale Genome analysis
 - Single Molecule Sequencing & Assembly
- 3. meta-
 - Assembly Forensics & Metassembly

micro-

MicroSeq: Microsatellite Analysis

M. Bekritsky, J. Troge, D. Levy, M. Wigler, M. Schatz

- Highly variable simple sequence repeats
 - $\dots GCACACACACAT \dots = \dots G(CA)_5 T \dots$
 - Mutate by slippage during replication, creating indels
 - High mutation rate makes it a useful marker for inferring phylogeny, associated with many diseases
- Genotyping with MicroSeq:
 - I. Rapidly detect MS in short reads
 - 2. Map reads using a new MS-mapper
 - 3. Analyze profiles across populations
- Currently looking at de novo mutations associated with autism

CTAGCCCCCTGTACG TAGCCCCCCCCTG AGCCCCCTGTACGAT GCCCCCCCCCTGTA

Мар

REF: ATGACTAGCCCCCCCCTGTACGATTTCG CTAGCCCCC----TGTACG TAGCCCCCCCTG AGCCCCC----TGTACGAT GCCCCCCCCTGTA

Scalpel: Haplotype Microassembly

G. Narzisi, D. Levy, I. Iossifov, J. Kendall, M. Wigler, M. Schatz

- Use assembly techniques to identify complex variations from short reads
 - Improved power to find indels
 - Trace candidate haplotypes sequences as paths through assembly graphs

Ref:	CACAGGATCCACCTTTCTCAAAGACCCAGGATCCTCCTTCCT	
Father:	•••CACAGGATCCACCTTTCTCAAAGACCCAGGATCCTCCTTCCT	[cov:19.5]
	: CACAGGATCCACCTTTCTCAAAGACCCAGGATCCTCCTTCCT	
Aut_2: Aut_1:	•••CACAGGATCCACCTTTCTCAAAGACCCAGGATCCTCCTTCCT	
Sib_1: Sib_2:	CACAGGATCCACCTTTCTCAAAGACCCAGGATCCTCCTTCCT	• •
		-

24 bp heterozygous indel at chr5:176026122 GPRIN1

Genomic Dark Matter

Hayan Lee, Michael Schatz

- Short read mapping is a essential for identifying mutations in the genome
 - Not every base of the genome can mapped equally well, especially because of repeats
- Introduced a new probabilistic metric the Genome Mappability Score - that quantifies how reliably reads can be mapped to every position in the genome
 - We have little power to measure 11-13% of the human genome, including of known clinically relevant variations
 - Errors in variation discovery are dominated by false positives, especially in low GMS regions

Species (build)	size	paired/single	whole (%)	transcription (%)
yeast (sc2)	12 Mbp	paired	94.85	95.04
50 05 95%		single	94.25	94.62
fly (dm3)	130 Mbp	paired	90.52	96.14
		single	89.70	95.94
mouse (mm9)	2.7 Gbp	paired	89.39	96.03
		single	87.47	94.75
human (hg19)	3.0 Gbp	paired	89.02	97.40
		single	87.79	96.38

Genomic Dark Matter: The reliability of short read mapping illustrated by the GMS. Lee, H., Schatz, M.C. (2011) Under Review

Jnomics: Cloud-scale genomics

Matt Titmus, James Gurtowski, Michael Schatz

- Rapid parallel execution of NGS analysis pipelines
 - FASTX, BWA, Novoalign, SAMTools, Hydra
 - Sorting, merging, filtering, selection, of BAM, SAM, BED, fastq
- Case study: Structural variations in esophageal cancer

Answering the demands of digital genomics Titmus, M.A., Schatz, M.C. (2011) *Under Review*

Pacific Biosciences RS Single Molecule Real Time (SMRT) Sequencing

Imaging of florescent phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Time

Intensity

Standard sequencing

- Long inserts so that the polymerase can synthesize along a single strand

• Circular consensus sequencing

 Short inserts, so polymerase can continue around the entire SMRTbell multiple times and generate multiple sub-reads from the same single molecule.

• Strobe sequencing

 Very long inserts, alternate the lasers in the instrument between on and off. On periods generate strobe sub-reads and the off periods determine the length of the spacing between, known as strobe advance

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf

Read Quality

Yeast (12 Mbp)

65 SMRT cells 734,151 reads after filtering Mean: 642.3 +/- 587.3 Median: 553 Max: 8,495

TTGTAAGCAGTTGAAAACTATGTGT <mark>G</mark> GATTTAG <mark>A</mark> ATAAAGAACATG <mark>A</mark> AAG
ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGC <mark>G</mark> GCTAGG
CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG
T <mark>A</mark> ACGAATC <mark>A</mark> AGATTCTGAAAACA <mark>C</mark> AT-AT <mark>AACA</mark> ACCTCCAAAA-CACAA
-AGGAGG <mark>GGA</mark> AA <mark>GGGGG</mark> GAATATCT-AT <mark>A</mark> AAAGATTACAAATT <mark>A</mark> GA-TGA
ACT-AATTCACAA <mark>T</mark> A-AATAACACTTTTA-ACA <mark>G</mark> AATTGAT-GGAA-GTT
TC <mark>G</mark> GAGAGATCC <mark>A</mark> AAACAAT <mark>G</mark> GGC-ATCG <mark>C</mark> CTTTGA-GTTAC-AATCAAA
ATCCAGT <mark>G</mark> GAAAATATA <mark>AT</mark> TTATGC <mark>A</mark> ATCCA <mark>G</mark> GAACTTATTCACAATTAG

Sample of 100k reads aligned with BLASR requiring >100bp alignment Average overall accuracy: 83.7%, 11.5% insertions, 3.4% deletions, 1.4% mismatch

PacBio Error Correction & Assembly http://wgs-assembler.sf.net

- I. Correction Pipeline
 - I. Map short reads (SR) to long reads (LR)
 - 2. Trim LRs at coverage gaps
 - 3. Compute consensus for each LR
- 2. Co-assemble corrected LRs and SRs

- Celera Assembler enhanced to support 32 Kbp reads
- 3. Error corrected reads can be easily assembled, aligned

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, Walenz, BP, Martin, J, Howard, J, Ganapathy, G, Wang, Z, Rasko, DA, McCombie, WR, Jarvis, ED, Phillippy, AM. (2011) *Under Review*

Error Correction Results

Correction results of 20x PacBio coverage of E. coli K12 corrected using 50x Illumina

Celera Assembler

http://wgs-assembler.sf.net

- I. Pre-overlap
 - Consistency checks
- 2. Trimming
 - Quality trimming & partial overlaps
- 3. Compute Overlaps
 - Find high quality overlaps
- 4. Error Correction
 - Evaluate difference in context of overlapping reads
- 5. Unitigging
 - Merge consistent reads
- 6. Scaffolding
 - Bundle mates, Order & Orient
- 7. Finalize Data
 - Build final consensus sequences

Assembly Results

SMRT-hybrid assembly results of 50x PacBio corrected coverage of E. coli K12 Long reads lead to **contigs** over 1Mbp

Hybrid Assembly Results

Organism	Technology	Reference bp	Assembly bp	# Contigs	Max Contig Length	N50	Assembly Errors
Lambda NEB3011	Illumina 50X 200bp	48 502	48 452	1	48 452	48 452	0
	PacBio 25X		48 440	1	48 440	48 440	0
E coll K12	Elumina 50X 500bp	4 639 675	4 438 989	75	222 538	80 168	6
	PacBio 20X		4 473 206	79	222 024	66 408	3
	Both 20X PacBio + Illumina 50X 500bp		4 516 224	67	374 849	93 148	8
E. coli C227-11	PacBio CCS 50X	5 504 407	4 917 717	76	249 515	100 322	15
	PacBio 10X		5 252 618	56	379 516	162 597	13
	PacBio 25X		5 397 525	41	596 739	216 129	13
	PacBio 50X		5 476 824	39	1 057 326	365 964	9
	PacBio 75X		5 601 310	55	642 068	308 312	10
	Both PacBio 50X + CSS 25X		5 453 558	33	1 167 060	527 198	8
	Illumina 50X 500bp		4 929 374	71	301 823	108 581	18
	Illumina 50X 500bp + 50X 3Kbp		5 138 293	58	391 461	190 996	29
	Illumina 50X 3Kbp + 50X 6Kbp		5 157 771	46	403 168	186 135	26
	Illumina 50X 500bp + 50X 3Kbp + 50X 6Kbp		5 140 142	60	397 294	153 941	27
	PacBio 25X		5 277 371	38	424 482	285 861	12
	Both PacBio 25X + Illumina 50X 500bp		5 410 343	41	912 608	286 829	9
E. coli 17-2	Illumina 50X 300bp	5 000 000	4 643 234	123	197 547	39 917	
	PacBio 25X		4 912 923	57	420 268	118 962	
	Both PacBio 25X + Illumina 50X 300bp		4 995 486	54	423 420	125 900	
E. coli JM211	454 50X	5 000 000	4 714 344	66	308 060	161 109	
	PacBio 25X		5 077 294	23	1 412 332	356 148	
	Both PacBio 25X + 454 25X		5 049 276	21	1 207 754	551 820) G.
S. cerevisiae S228c	Illumina 50X 300bp	12 157 105	10 528 780	271	150 618	44 174	6
	PacBio 13X		11 101 617	226	191 587	63 095	15
	Both PacBio 13X + Illumina 50X 300bp		12 157 105	207	323 716	67 117	21
Melopsittacus undulatus	Illumina 50X 500bp	1.23Gbp	349 472 172	212 581	11 572	465	
3	PacBio 3X	1.1	882 984 450	237 121	51 333	3 250	
	Lander Waterman 3X Prediction		1 153 148 167	173 565	69 663	9 0 2 6	e

Hybrid assembly results using error corrected PacBio reads Meets or beats Illumina-only or 454-only assembly in every case

Transcript Alignment

- Long-read single-molecule sequencing has potential to directly sequence full length transcripts
 - Raw reads and raw alignments (red) have many spurious indels inducing false frameshifts and other artifacts
 - Error corrected reads almost perfectly match the genome, pinpointing splice sites, identifying alternative splicing
- New collaboration with Gingeras Lab looking at splicing in human

meta-

2011:Year of the Assembly Bakeoff

- Simulated genome distantly related to human chr13
- 17 labs, 50+ assemblies

- 4 real genomes ranging from bacteria to individual human chromosome
- Internal evaluation of 8 assemblers

Assemblathon I:A competitive assessment of de novo short read assembly methods. Earl, DA et al. (2011) Genome Research. In press.

GAGE: A critical evaluation of genome assemblies and assembly algorithms. Salzberg, SL et al. (2011) Genome Research. In press.

Assemblathon Results

Mis-assembly Markers

Final Rankings

ID	Overall	CPNG50	SPNG50	Struct.	CC50	Subs.	Copy. Num.	Cov. Tot.	Cov. CDS
BGI	36	$\overrightarrow{\mathbf{x}}$						\$	
Broad	37		*	*	\$				
WTSI-S	46		\$		*	\$			
CSHL	52	*		1000					\$
BCCGSC	53								
DOEJGI	56			$\overrightarrow{\mathbf{x}}$	$\overrightarrow{\alpha}$	*			
RHUL	58								
WTSI-P	64								
EBI	64						\$		
CRACS	64				1	23			

- SOAPdenovo and ALLPATHS came out neck-and-neck followed closely behind by SGA, Celera Assembler, and ABySS
- My recommendation for "typical" short read assembly is to use ALLPATHS

Assemblathon 2

• Real sequence data, de novo assembly

- Step 1: Apply best practices from Assemblathon 1
- Step 2: Add secret weapon for winning...

Forensics

Assembly Forensics

Computationally scan an assembly for mis-assemblies.

- Data inconsistencies are indicators for mis-assembly
- Some inconsistencies are merely statistical variations

AMOSvalidate

- 1. Load Assembly Data into Bank
- 2. Analyze Mate Pairs & Libraries
- 3. Analyze Depth of Coverage
- 4. Analyze Read Alignments
- 5. Analyze Read Breakpoints
- 6. Load Mis-assembly Signatures into Bank

Mis-assembly types

Basic mis-assemblies can be combined into more complicated patterns: Insertions, Deletions, Giant Hairballs

Mate Evaluation

• Correct: mates have expected orientation and separation

• Mis-assembled: mates have incorrect orientation and separation

• Slightly compressed/expanded mates are expected because mates are sampled from a distribution of fragments

Compression/Expansion Statistic

Forensics

Hidden Compression

Forensics

Hawkeye & AMOS: Visualizing and assessing the quality of genome assemblies Schatz, M.C. et al. (2011) Briefings in Bioinformatics. In Press.

Assemblathon 2

• Real sequence data, de novo assembly

- Step 1: Apply best practices from Assemblathon 1
- Step 2: Add secret weapon for winning...

Summary

Assembly is a powerful tool for analyzing sequences, and is moving to increasingly more complex genomes and data types.

 Microassembly is a powerful tool needed to fully understand the genetics of autism and other diseases.

• A global analysis of the genome requires new statistics and computational methods to understand the patterns that we observe.

• Metassembly lets us maximize connectivity without sacrificing the quality of a de novo assembly.

Acknowledgements

Mitch Bekritsky Giuseppe Narzisi

Ivan Iossifov Wigler Lab

SFARI SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

Hayan Lee Matt Titmus James Gurtowski

Ware Lab McCombie Lab

Adam Phillippy (NBACC) Sergey Koren (NBACC)

DOE Systems Biology Knowledgebase

Paul Baranay (CSHL/ND)

Scott Emrich (ND) Steven Salzberg (JHU) Mihai Pop (UMD)

National Human Genome Research Institute

Thank You

http://schatzlab.cshl.edu @mike_schatz