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Molecular Biology & DNA Sequencing 

ATCTGATAAGTCCCAGGACTTCAGT 

GCAAGGCAAACCCGAGCCCAGTTT 

TCCAGTTCTAGAGTTTCACATGATC 

GGAGTTAGTAAAAGTCCACATTGAG 

 Genome of an organism encodes the genetic information 
in long sequence of 4 DNA nucleotides: ACGT 
•  Bacteria: ~3 million bp 

•  Humans: ~3 billion bp 

 

 

Current DNA sequencing machines can sequence billions 
of short (25-500bp) reads from random positions 
•  Per-base error rate estimated at 1-2% (Simpson et al, 2009 

•  Requires smart systems to analyze the sequences 

 

 

Modern Biology requires Computational Biology 
•  Individual reads have very little information 

•  World-wide sequencing capacity exceeds 12Pbp/year 

  



Personal Genomics 
How does your genome compare to Craig’s? 

Heart Disease 

Cancer 

Cool under fire 

 



Accelerating Short Read Mapping 

•  Naïve Read Mapping is hopelessly slow 
•  1 billion 100bp reads x 3 billion positions 

•  Use an index to accelerate the search 
•  Skip to “S” to lookup Schatz in the phonebook 
•  No word boundaries in the genome, so consider 

every possible word/suffix 

•  The Suffix Array (Manber & Myers, 1991) is one of 
the most popular index structures 
•  Lexicographically sorted list of suffixes 
•  Fast binary search lookups: O(lg n) = 32 probes / read 
•  Relatively space efficient: O(n lg n) =15GB / genome 
•  Core index for Vmatch (http://www.vmatch.de/) and 

many other applications 

Suffix array  
of “GATTACA$” 
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$GATTACA!
A$GATTAC!
ACA$GATT!
ATTACA$G!
CA$GATTA!
GATTACA$!
TACA$GAT!
TTACA$GA!

Burrows-Wheeler Transform 

•  Suffix Array is tight, but much larger than genome 
•  BWT is a reversible permutation of the genome based on the suffix array 
•  Fast search and linear space requirements 
•  Core index for Bowtie (Langmead et al., 2009) and most recent short read 

mapping applications 

Burrows Wheeler 
Matrix 

BWT(T) T 

A block sorting lossless data compression algorithm.  
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124 

GATTACA$! ACTGA$TA!

LF Property  
implicitly encodes 
suffix array 



Index Construction 
•  Naïve Suffix Array Construction 

•  O(n2 lg n) = O(n lg n) comparisons x O(n) per comparison 

•  Linear time Suffix Array Construction 
•  Original: Construct suffix tree -> traverse tree (Weiner, 1973) 
•  Recent: Difference Cover / DC3 (Karkkainen et al., 2006) 

•  Intuition 
•  O(1) to order suffixes a & b if we know order of a+1 & b+1 
•  Recursively order 2/3G to order remaining 1/3 in O(1) 

•  BWT trivially constructed from SA or from (slower) counting techniques 

•  The leading methods require several hours for each mammalian genome 
•  Parallel methods not generally applied because of the requirement for 

very fast interconnect (Kulla et al., 2007) 



Indexing Challenges 

http://en.wikipedia.org/wiki/File:Genome_Sizes.png 

Sequencing underway for great numbers of very large genomes 



Basic Construction with MapReduce 

GATTA CA$!

Map Map 
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Reduce 
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Shuffle 

Partition suffixes in lexicographically distinct bins, independently sort each bin 



Optimizations 
 Hadoop Optimizations 

1.  Shuffle “bare” indices to reduce shuffle volume 
2.  Use Sampling Partitioner to optimize load balance  

!  Inspired by TotalOrderPartitioner from SortBenchmark.org 

3.  Run length encode bin boundaries to reduce size  
!  AAA….AAAG => A:10000|G:1 

 Reducer Optimizations 
1.  Recursive Bucket Sort using first p characters (p=15) 
2.  Precompute single nucleotide repeat length 

!  Linear time sort of long simple repeats AAA….AAAG 
!  Accelerate comparing simple repeats AAA…AAAGAAA…AAAC 

3.  Rank memoization (inspired by DC3 algorithm) 
!  Use relative rank of suffixes a,b to accelerate comparison of a-d,b-d 

See paper for 
gory details 



Experimental Evaluation 

!  Implementation 
!  Java and JNI/C++ 

!  Genome in shared memory 

!  Testbed: Amazon EC2  
!  High-Memory double extra large instances ($1 / hour). 

!  4 HT cores @ 3.2 EC2 compute units 

!  34.2G RAM, 850G Disk 

!  Hadoop 0.20.2, VM Image: AMI-6AA34003  

!  Max cluster size: 21 (1 master and 20 drones) 

!"#$%%&'()*+''+,)*&'-%#%+).'-)/0.()10.+2



Genomes evaluated 



End-to-End Performance 

!  Evaluate performance using 
increasing numbers of cores 
!  15x speedup over Bowtie 
!  9x speedup over Vmatch 

!  Performance beyond 60 cores is 
limited by Hadoop overhead. 
!  120C cluster requires 398s to scan 

human genome using HashPartitioner 
and IdentityReducer to write 
unsorted list of suffixes 

  



Reducer run time 

!  End-to-end runtime has 
substantial Hadoop overhead 

!  Meaure runtime of the 
reducer alone 

–  Start: Index collection by reducer 

–  End: SA written to local disk 

 
!  Reducer runtime improved 

performance through 120C 



Genome Scaling Performance 

!  Evaluate performance using a 
fixed number of cores across 
the 5 genomes 

!  End-to-end runtime is ~linear 
with the size of the genome 

!  Our performance optimizations 
are very effective on real genomes  

!  3Gbp Human genome takes ~9 
minutes 

!  Scaling to loblolly pine (24Gbp) 
should only take ~1hr 10 min  



Hadoop for NGS Analysis 
CloudBurst 

Highly Sensitive Short Read 
Mapping with MapReduce 

 
100x speedup mapping 
on 96 cores @ Amazon 

 
 

(Schatz, 2009) http://cloudburst-bio.sf.net 

Quake 

Quality�aware error 
correction of short reads 

 
Correct 97.9% of errors   
with 99.9% accuracy 

 
 

(Kelley, Schatz,  
Salzberg, 2010) 

Histogram of cov

Coverage
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http://www.cbcb.umd.edu/software/quake/ 

Contrail 

Assembly of Large Genomes 
Using Cloud Computing 

 
Quickly assemble the human genome 

with hundreds of commodity cores 
 
 
 

(Schatz et al. 2011*) http://contrail-bio.sf.net/ 

Crossbow 

Searching for SNPs with 
Cloud Computing 

 
Identify 3M SNPs in an afternoon 

 
 
 

(Langmead, Schatz 
Lin, Pop, Salzberg, 2009) http://bowtie-bio.sf.net/crossbow/ 



•  Staying afloat in the data deluge means 
computing in parallel 
–  Hadoop + Cloud computing is an attractive platform 

for large scale sequence analysis and computation 

•  Our algorithm has substantially accelerated a 
critical problem in computational biology 
–  Conceptually straightforward, but required careful 

algorithm analysis and engineering 
–  Current performance limited by Hadoop  

•  Future Work 
–  Integration with Bowtie, BWA 
–  Phased algorithm for low memory clusters, read 

indexing 
–  Continue development of MapReduce-enabled 

algorithms for biology 

Summary 
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