
Assembly of Large Genomes using Cloud Computing 

Michael Schatz 

July 23, 2010 

Illumina Sequencing Panel 



How to compute with 1000s of cores 

Michael Schatz 

July 23, 2010 

Illumina Sequencing Panel 



Parallel Architectures 
•! Why Parallel? 

–! CPU manufactures up against fundamental limitations 

–! Need it done faster, problem is too big for a single machine 

•! Multi-core (2-10s of cores) 

–! Familiar programming environment 

–! Limited scaling 

•! GPU & FPGA (10s – 1000 of cores) 

–! Very high performance for some applications 

–! Limited/Slow memory, complicated development environment 

•! Cluster / Distributed Programming (10s – 1000s of machines) 

–! Well suited for very large data problems 

–! Scheduling, Fault tolerance & Network communication 



Amazon Web Services 

•! “All you need is a credit card to use one 
of the largest datacenters in the world” 

–! Best for large infrequent computations 

•! Elastic Compute Cloud (EC2) 

–! On demand computing power 

•! Support for Windows, Linux, & OpenSolaris 

•! Starting at 8.5¢ / core / hour 

•! Simple Storage Service (S3) 

–! Scalable data storage 

•! 10¢ / GB upload fee, 15¢ / GB monthly fee 
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Parallel Algorithms Spectrum 

Loosely 

Coupled 

MapReduce/DryadLINQ 

Genotyping 
K-mer Counting 

Embarrassingly Parallel + 
Parallel Communication 

Embarrassingly  

Parallel 

Batch Computing 

Alignment 
HMM Scoring 

Scheduling + 
Load Balance 

Tightly 

Coupled 

MPI/MapReduce/Pregel 

Graph Analysis 
Genome Assembly 

Loosely Coupled + 
Parallel Algorithm Design 



Embarrassingly Parallel 
•! Batch computing 

–! Each item is independent 

–! Split input into many chunks 

–! Process each chunk separately on a 
different computer 

•! Challenges 

–! Distributing work, load balancing, 
monitoring & restart 

•! Technologies  

–! Condor, Sun Grid Engine 

–! Amazon Simple Queue 



Elementary School Dance 



Loosely Coupled 

•! Divide and conquer 

–! Independently process many items 

–! Group partial results  

–! Scan partial results into final answer 

•! Challenges 

–! Batch computing challenges  

–! + Shuffling of huge datasets 

•! Technologies 

–! Hadoop, Elastic MapReduce, Dryad 

–! Parallel Databases 



Junior High Dance 



•! MapReduce is the parallel distributed framework invented by 
Google for large data computations.  

–! Data and computations are spread over thousands of computers, processing 
petabytes of data each day (Dean and Ghemawat, 2004) 

–! Indexing the Internet, PageRank, Machine Learning, etc… 

–! Hadoop is the leading open source implementation 
•! GATK is an alternative implementation specifically for NGS 

Hadoop MapReduce 

•! Benefits 
–! Scalable, Efficient, Reliable 
–! Easy to Program 
–! Runs on commodity computers 

•! Challenges 
–! Redesigning / Retooling applications 

–! Not Condor, Not MPI 
–! Everything in MapReduce 
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map reduce 

K-mer Counting 
•! Application developers focus on 2 (+1 internal) functions 

–! Map: input ! key:value pairs 

–! Shuffle: Group together pairs with same key 

–! Reduce: key, value-lists ! output 

ATGAACCTTA!

GAACAACTTA!

TTTAGGCAAC!

ACA -> 1!

ATG -> 1!

CAA -> 1,1!

GCA -> 1!

TGA -> 1!

TTA -> 1,1,1!

ACT -> 1!

AGG -> 1!

CCT -> 1!

GGC -> 1!

TTT -> 1!

AAC -> 1,1,1,1!

ACC -> 1!

CTT -> 1,1!

GAA -> 1,1!

TAG -> 1!

ACA:1!

ATG:1!

CAA:2!

GCA:1!

TGA:1!

TTA:3!

ACT:1!

AGG:1!

CCT:1!

GGC:1!

TTT:1!

AAC:4!

ACC:1!

CTT:2!

GAA:2!

TAG:1!

Map, Shuffle & Reduce 

All Run in Parallel 

shuffle 



 Hadoop Architecture 

•! Hadoop Distributed File System (HDFS) 

–! Data files partitioned into large chunks (64MB),  replicated on multiple nodes 

–! Computation moves to the data, rack-aware scheduling 

•! Hadoop MapReduce system won the 2009 GreySort Challenge 

–! Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks 

Slave 5 

Slave 4 

Slave 3 

Slave 2 

Slave 1 

Master Desktop 



Short Read Mapping 

•! Given a reference and many subject reads, report one or more “good” end-to-
end alignments per alignable read 

–! Find where the read most likely originated 

–! Fundamental computation for many assays 

•! Genotyping    RNA-Seq    Methyl-Seq 

•! Structural Variations   Chip-Seq    Hi-C-Seq 

•! Desperate need for scalable solutions 

–! Single human requires ~1,000 CPU hours / genome 

…CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 

GCGCCCTA 
GCCCTATCG 
GCCCTATCG 

CCTATCGGA 
CTATCGGAAA 

AAATTTGC 
AAATTTGC 

TTTGCGGT 
TTGCGGTA 

GCGGTATA 

GTATAC… 

TCGGAAATT 
CGGAAATTT 

CGGTATAC 

TAGGCTATA 
AGGCTATAT 
AGGCTATAT 
AGGCTATAT 

GGCTATATG 
CTATATGCG 

…CC 
…CC 
…CCA 
…CCA 
…CCAT 

ATAC… 
C… 
C… 

…CCAT 
…CCATAG TATGCGCCC 

GGTATAC… 
CGGTATAC 

Identify variants 

Reference 

Subject 



Crossbow 

•! Align billions of reads and find SNPs 

–! Reuse software components: Hadoop Streaming 
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•! Map: Bowtie (Langmead et al., 2009) 

–! Find best alignment for each read 

–! Emit (chromosome region, alignment) 

•! Reduce: SOAPsnp (Li et al., 2009) 

–! Scan alignments for divergent columns 

–! Accounts for sequencing error, known SNPs 

•! Shuffle: Hadoop 

–! Group and sort alignments by region 

;
/

;
/



Performance in Amazon EC2 

Asian Individual Genome 

Data Loading 3.3 B reads 106.5 GB $10.65 

Data Transfer 1h :15m 40 cores $3.40 

Setup 0h : 15m 320 cores $13.94 

Alignment 1h : 30m 320 cores $41.82 

Variant Calling 1h : 00m 320 cores $27.88 

End-to-end 4h : 00m $97.69 

Analyze an entire human genome for ~$100 in an afternoon. 
Accuracy validated at >99% 

Searching for SNPs with Cloud Computing. 
Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. 10:R134! 
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Tightly Coupled 

•! Computation that cannot be partitioned 

–! Graph Analysis 

–! Molecular Dynamics 

–! Population simulations 

•! Challenges 

–! Loosely coupled challenges  

–! + Parallel algorithms design 

•! Technologies 

–! MPI 

–! MapReduce, Dryad, Pregel 



High School Dance 



Short Read Assembly 

AAGA 
ACTT  
ACTC 
ACTG 
AGAG 
CCGA 
CGAC 
CTCC 
CTGG 
CTTT 
… 

de Bruijn Graph Potential Genomes 

AAGACTCCGACTGGGACTTT 

•! Genome assembly as finding an Eulerian tour of the de Bruijn graph 

–! Human genome: >3B nodes, >10B edges 

•! The new short read assemblers require tremendous computation 
–! Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM x weeks 

–! ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours 

–! SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM 

CTC CGA 

GGA CTG 

TCC CCG 

GGG TGG 

AAG AGA GAC ACT CTT TTT 

Reads 

AAGACTGGGACTCCGACTTT 



Graph Compression 
•! Graph construction straightforward in MapReduce 

–! Straightforward extension to k-mer counting 

•! After construction, many edges are unambiguous 
–! Merge together compressible nodes 

–! Graph physically distributed over hundreds of computers 



Warmup Exercise 
•! Who here was born closest to July 23? 

–!You can only compare to one person at a time 

Find winner among 16 teams in just 4 rounds 



Fast Path Compression 

 Challenges 
–! Nodes stored on different computers 

–! Nodes can only access direct neighbors 

 Randomized List Ranking 

–! Randomly assign  H /  T  to each 
compressible node 

–! Compress  H ! T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Initial Graph: 42 nodes 



Fast Path Compression 

 Challenges 
–! Nodes stored on different computers 

–! Nodes can only access direct neighbors 

 Randomized List Ranking 

–! Randomly assign  H /  T  to each 
compressible node 

–! Compress  H ! T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 1: 26 nodes (38% savings) 



Fast Path Compression 

 Challenges 
–! Nodes stored on different computers 

–! Nodes can only access direct neighbors 

 Randomized List Ranking 

–! Randomly assign  H /  T  to each 
compressible node 

–! Compress  H ! T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 2: 15 nodes (64% savings) 



Fast Path Compression 

 Challenges 
–! Nodes stored on different computers 

–! Nodes can only access direct neighbors 

 Randomized List Ranking 

–! Randomly assign  H /  T  to each 
compressible node 

–! Compress  H ! T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 2: 8 nodes (81% savings) 



Fast Path Compression 

 Challenges 
–! Nodes stored on different computers 

–! Nodes can only access direct neighbors 

 Randomized List Ranking 

–! Randomly assign  H /  T  to each 
compressible node 

–! Compress  H ! T  links 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 3: 6 nodes (86% savings) 



Fast Path Compression 

 Challenges 
–! Nodes stored on different computers 

–! Nodes can only access direct neighbors 

 Randomized List Ranking 

–! Randomly assign  H /  T  to each 
compressible node 

–! Compress  H ! T  links 

 Performance 
–! Compress all chains in log(S) rounds 

Randomized Speed-ups in Parallel Computation. 
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.  

Round 4: 5 nodes (88% savings) 



Node Types 

(Chaisson, 2009) 

 Isolated nodes (10%) 

 Tips (46%) 

 Bubbles/Non-branch (9%) 

 Dead Ends (.2%) 

 Half Branch (25%) 

 Full Branch (10%) 



Contrail 

De novo bacterial assembly 

•! Genome: E. coli K12 MG1655, 4.6Mbp 

•! Input: 20.8M 36bp reads, 200bp insert (~150x coverage) 

•! Preprocessor: Quality-Aware Error Correction 

http://contrail-bio.sourceforge.net 

Assembly of Large Genomes with Cloud Computing. 
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation. 

Cloud Surfing Error Correction Compressed Initial 

N 
Max 
N50 

5.1 M 
27 bp 
27 bp 

245,131 
1,079 bp 

156 bp 

2,769 
70,725 bp 
15,023 bp 

1,909 
90,088 bp 
20,062 bp 

300 
149,006 bp 
54,807 bp 

Resolve Repeats 



E. coli Assembly Quality 

Assembler Contigs ! 100bp N50 (bp) Incorrect contigs  

Contrail PE 300 54,807 4 

Contrail SE 529 20,062 0 

SOAPdenovo PE 182 89,000 5 

ABySS PE 233 45,362 13 

Velvet PE 286 54,459 9 

EULER-SR PE 216 57,497 26 

SSAKE SE 931 11,450 38  

Edena SE 680 16,430 6 

Incorrect contigs:  Align at < 95% identity or < 95% of their length 

It was the best of times, it 

 of times, it was the 

it was the age of 

it was the worst of times, it 





Contrail 

De novo Assembly of the Human Genome 

•! Genome: African male NA18507 (SRA000271, Bentley et al., 2008) 

•! Input: 3.5B 36bp reads, 210bp insert (~40x coverage) 

Compressed Initial 

N 
Max 
N50 

>7 B 
27 bp 
27 bp 

>1 B 
303 bp 

< 100 bp 

Assembly of Large Genomes with Cloud Computing. 
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation. 

http://contrail-bio.sourceforge.net 

Cloud Surfing Error Correction 

4.2 M 
20,594 bp 

995 bp 

4.1 M 
20,594 bp 
1,050 bp 

In progress 

Resolve Repeats 



Scalable Solutions for DNA Sequence Analysis 

Myrna 
http://bowtie-bio.sf.net/myrna 

Cloud-scale differential gene 
expression from RNA-seq 

Ben Langmead,  
Kasper Hansen, Jeff Leek  

Quake 
http://www.cbcb.umd.edu/software/quake 

Quality!aware error correction 
of sequencing reads  

 ! 
David Kelley,  

Michael Schatz, Steven Salzberg 

True  

k-mers 

Error  

k-mers 

Step 1: Compute Q-mer Distribution 

Compute in parallel across reads, merging 

together results across files 

Step 2: Correct reads 

Untrusted k-mers are evaluated in order of 

decreasing likelihood. 



•! Surviving the data deluge means computing 
in parallel 

–! Cloud computing is an attractive platform for 
large scale sequence analysis and computation 

•! Significant obstacles ahead 

–! Transfer time 

–! Privacy / security requirements 

–! Time and expertise required for development 

–! Price 

–! What are the alternatives? 

•! Emerging technologies are a great start, 
but we need continued research 

–! A word of caution: new technologies are new 

Summary 
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Genome Coverage 
Idealized assembly 

•! Uniform probability of a read 
starting at a given position 

–! p = G/N 

•! Poisson distribution in coverage 
along genome 

–! Contigs end when there is no 
overlapping read 

•! Contig length is a function of 
coverage and read length 

–! Short reads require much 
higher coverage 

Assembly of Large Genomes using Second Generation Sequencing 
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research.  



Recent Large Assemblies 



Cloud Cluster 

Cloud 
Storage 
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Cloud 
Storage 

Internet 

Uplink 

Cloud Computing and the DNA Data Race. 
Schatz, MC, Langmead, B, Salzberg SL (2010) Nature Biotechnology. 



Human Assembly Quality 

Assembler Contigs ! 100bp N50 (bp) Total Length (Gbp) 

Contrail SE 4,285,080 1,050 2.13 

SOAPdenovo PE NA 4,611 2.63 

SOAPdenovo SE NA 886 2.10 

ABySS PE 2,762,173 1,499 2.18 

ABySS SE 4,348,132 870 2.10 


