Design Patterns for Efficient Graph Algorithms in MapReduce

Jimmy Lin and Michael Schatz University of Maryland

Tuesday, June 29, 2010

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Talk Outline

- Graph algorithms
- Graph algorithms in MapReduce
- Making it efficient
- Experimental results

```
Punch line: per-iteration running time -69% on 1.4b link webgraph!
```

What's a graph?

- G = (V, E), where
 - V represents the set of vertices (nodes)
 - E represents the set of edges (links)
 - Both vertices and edges may contain additional information
- Graphs are everywhere:
 - E.g., hyperlink structure of the web, interstate highway system, social networks, etc.
- Graph problems are everywhere:
 - E.g., random walks, shortest paths, MST, max flow, bipartite matching, clustering, etc.

Source: Wikipedia (Königsberg)

Graph Representation

- G = (V, E)
- Typically represented as adjacency lists:
 - Each node is associated with its neighbors (via outgoing edges)

"Message Passing" Graph Algorithms

- Large class of iterative algorithms on sparse, directed graphs
- At each iteration:
 - Computations at each vertex
 - Partial results ("messages") passed (usually) along directed edges
 - Computations at each vertex: messages aggregate to alter state
- Iterate until convergence

A Few Examples...

- Parallel breadth-first search (SSSP)
 - Messages are distances from source
 - Each node emits current distance + 1 Boring!
 - Aggregation = MIN
- PageRank
 - Messages are partial PageRank mass
 - Each node evenly distributes mass to neighbors Still boring!
 - Aggregation = SUM
- DNA Sequence assembly
 - Michael Schatz's dissertation

PageRank in a nutshell....

- Random surfer model:
 - User starts at a random Web page
 - User randomly clicks on links, surfing from page to page
 - With some probability, user randomly jumps around
- PageRank
 - Characterizes the amount of time spent on any given page
 - Mathematically, a probability distribution over pages

PageRank: Defined

Given page x with inlinks t_1 , t_n , where

- *C(t)* is the out-degree of *t*
- α is probability of random jump
- *N* is the total number of nodes in the graph

Sample PageRank Iteration (1)

Sample PageRank Iteration (2)

PageRank in MapReduce

twit

SUMMIT 2010

PageRank Pseudo-Code

Why don't distributed algorithms scale?

Three Design Patterns

- In-mapper combining: efficient local aggregation
- Smarter partitioning: create more opportunities
- Schimmy: avoid shuffling the graph

In-Mapper Combining

- Use combiners
 - Perform local aggregation on map output
 - Downside: intermediate data is still materialized
- Better: in-mapper combining
 - Preserve state across multiple map calls, aggregate messages in buffer, emit buffer contents at end
 - Downside: requires memory management

Better Partitioning

- Default: hash partitioning
 - Randomly assign nodes to partitions
- Observation: many graphs exhibit local structure
 - E.g., communities in social networks
 - Better partitioning creates more opportunities for local aggregation
- Unfortunately partitioning is hard!
 - Sometimes, chick-and-egg
 - But in some domains (e.g., webgraphs) take advantage of cheap heuristics
 - For webgraphs: range partition on domain-sorted URLs

Schimmy Design Pattern

- Basic implementation contains two dataflows:
 - Messages (actual computations)
 - Graph structure ("bookkeeping")
- Schimmy: separate the two data flows, shuffle only the messages
 - Basic idea: merge join between graph structure and messages

Do the Schimmy!

- Schimmy = reduce side parallel merge join between graph structure and messages
 - Consistent partitioning between input and intermediate data
 - Mappers emit only messages (actual computation)
 - Reducers read graph structure directly from HDFS

Experiments

- Cluster setup:
 - 10 workers, each 2 cores (3.2 GHz Xeon), 4GB RAM, 367 GB disk
 - Hadoop 0.20.0 on RHELS 5.3
- Dataset:
 - First English segment of ClueWeb09 collection
 - 50.2m web pages (1.53 TB uncompressed, 247 GB compressed)
 - Extracted webgraph: 1.4 billion links, 7.0 GB
 - Dataset arranged in crawl order
- Setup:
 - Measured per-iteration running time (5 iterations)
 - 100 partitions

Take-Away Messages

- Lots of interesting graph problems!
 - Social network analysis
 - Bioinformatics
- Reducing intermediate data is key
 - Local aggregation
 - Better partitioning
 - Less bookkeeping

Complete details in Jimmy Lin and Michael Schatz. **Design Patterns for Efficient Graph Algorithms in MapReduce.** *Proceedings of the 2010 Workshop on Mining and Learning with Graphs Workshop (MLG-2010)*, July 2010, Washington, D.C.

Data-Intensive Text Processing with MapReduce Jumy Lin Chris Dyer http://mapreduce.me/ WYTHESS LECTURES OF FUNDER FUNDER

