
Computational Architecture of Cloud Environments

Michael Schatz

April 1, 2010
NHGRI Cloud Computing Workshop

Cloud Architecture

Input Output

Computation

Nebulous question:

 Cloud computing = Utility computing + Enabling Computational Technologies
 Goal: Many computers working together to analyze huge datasets

 Challenge: 100x processors rarely means 100x faster

Why Parallel?

•  Moore’s Law is valid in 2010

–  But CPU speed is flat

–  Vendors switching to
multicore solutions instead

•  Why parallel

–  Need it done faster

–  Doesn’t fit on one machine

The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software

Herb Sutter, http://www.gotw.ca/publications/concurrency-ddj.htm

Parallel Computing Spectrum

Regularly

Parallel

MapReduce

Enabling Technologies Emerging

Align-Shuffle-Scan

Genotyping

K-mer Counting

Embarrassingly

Parallel

Batch Computing

Many Good Solutions

BLAST

HMM Scoring

Parameter Sweep

Deeply

Parallel

MPI & PRAM

Open Research Area

Graph Analysis

Genome Assembly

MD Simulations

Embarrassingly Parallel
•  Batch computing

–  Each item is independent

–  Split input into many chunks

–  Process each chunk separately on a
different computer

•  Challenges

–  Distributing work, load balancing,
monitoring & restart

•  Technologies

–  Condor, Sun Grid Engine

–  Amazon Simple Queue

Elementary School Dance

Regularly Parallel

•  Align-Shuffle-Scan in MapReduce

–  Align a large set of reads

–  Shuffle to group and sort by chromosome

–  Scan alignments for SNPs

•  Challenges

–  Batch computing challenges

–  + Shuffling of huge datasets

•  Technologies

–  Hadoop, Elastic MapReduce, Dryad

–  Parallel Databases

…
 

…
 

Junior High Dance

Crossbow Scaling

•  Even with this relatively simple parallel
application, we do not achieve perfect efficiency.

–  Interesting tradeoffs in time vs. money

Deeply Parallel

•  Computation that cannot be partitioned

–  Graph Analysis

–  Molecular Dynamics

–  Population simulations

•  Challenges

–  Regular parallel challenges

–  + Parallel algorithms design

•  Technologies

–  MPI

–  MapReduce, Dryad

High School Dance

Short Read Assembly

AAGA
ACTT
ACTC
ACTG
AGAG
CCGA
CGAC
CTCC
CTGG
CTTT
…

de Bruijn Graph Potential Genomes

AAGACTCCGACTGGGACTTT

•  Genome assembly as finding an Eulerian tour of the de Bruijn graph

–  Human genome: >3B nodes, >10B edges

•  The new short read assemblers require tremendous computation
–  Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM

–  ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours

–  SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

CTC CGA

GGA CTG

TCC CCG

GGG TGG

AAG AGA GAC ACT CTT TTT

Reads

AAGACTGGGACTCCGACTTT

Graph Compression

•  After construction, many edges are unambiguous
–  Merge together compressible nodes

–  Graph physically distributed over hundreds of computers

Fast Path Compression

 Challenges

–  Nodes stored on different computers

–  Nodes can only access direct neighbors

 Randomized List Ranking

–  Randomly assign H / T to each
compressible node

–  Compress H  T links

 Performance
–  Compress all chains in log(S) rounds

Randomized Speed-ups in Parallel Computation.
Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Contrail

Scalable Genome Assembly with MapReduce

•  Genome: African male NA18507 (Bentley et al., 2008)

•  Input: 3.5B 36bp reads, 210bp insert (SRA000271)

•  Preprocessor: Quality-Aware Error Correction

http://contrail-bio.sourceforge.net

Assembly of Large Genomes with Cloud Computing.
Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

Cloud Surfing Error Correction Compressed Initial

N

Max
N50

>10 B

27 bp
27 bp

>1 B

303 bp
< 100 bp

5.0 M

14,007 bp
650 bp

4.2 M

20,594 bp
923 bp

In progress

Resolve Repeats

•  Surviving the data deluge means computing in parallel

–  Good solutions for “easy” parallel problems, but
gets fundamentally more difficult as dependencies
get deeper

•  Parallel systems require connecting many components

–  We can get started by agreeing on common input
and output formats, open source software

–  Move the computation to the data

•  Emerging technologies are a great start, but we need
continued research integrating computational biology
with research in HPC

–  A word of caution: new technologies are new

Summary

Acknowledgements

Ben Langmead

Steven Salzberg Mihai Pop

Dan Sommer

Jimmy Lin

David Kelley

Thank You!

http://www.cbcb.umd.edu/~mschatz

@mike_schatz

