Scalable Solutions for DNA Sequence Analysis Michael Schatz

March 23, 2010 Cold Spring Harbor Laboratory

Outline

- I. Genome Assembly by Analogy
- 2. DNA Sequencing and Genomics
- 3. MapReduce for Sequence Analysis
 - I. K-mer counting
 - 2. Read Mapping & Genotyping
 - 3. Genome Assembly

Shredded Book Reconstruction

Dickens accidentally shreds the first printing of <u>A Tale of Two Cities</u>
 – Text printed on 5 long spools

- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

Greedy Reconstruction

The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model sequence reconstruction as a graph problem.

de Bruijn Graph Construction

- $D_k = (V, E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

Counting Eulerian Tours $A \rightarrow B \rightarrow D$ ARBRCRDor ARCRBRD

Generally an exponential number of compatible sequences

- Value computed by application of the BEST theorem (Hutchinson, 1975)

$$\mathcal{W}(G,t) = (\det L) \left\{ \prod_{u \in V} (r_u - 1)! \right\} \left\{ \prod_{(u,v) \in E} a_{uv}! \right\}^{-1}$$

L = n x n matrix with r_u - a_{uu} along the diagonal and $-a_{uv}$ in entry uv
 $r_u = d^+(u) + l$ if $u = t$, or $d^+(u)$ otherwise
 a_{uv} = multiplicity of edge from u to v

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) *BMC Bioinformatics*.

Genomics and Evolution

Your genome influences (almost) all aspects of your life

- Anatomy & Physiology: 10 fingers & 10 toes, organs, neurons
- Diseases: Sickle Cell Anemia, Down Syndrome, Cancer
- Psychological: Intelligence, Personality, Bad Driving
- Genome as a recipe, not a blueprint

Like Dickens, we can only sequence small fragments of the genome

Genomics across the Tree of Life

Selected Genomes

- *M. gallopavo* (Folkerts et al., 2010*)
- A. dorsata (Ruepell et al., 2010*)
- V. destructor (Cornman et al., 2010*)
- *N. ceranae* (Cornman et al., 2009)
- B. taurus (Zimin et al., 2009)
- *C. papaya* (Ming et al., 2008)
- X. oryzae (Salzberg et al., 2008)
- T. vaginalis (Carlton et al., 2007)
- Drosophila (Drosophila 12 genomes consortium, 2007)
- B. malayi (Ghedin et al., 2007)
- A. aegypti (Nene et al., 2007)
- Campylobacter (Fouts et al., 2005)

* In preparation or under review

The Evolution of DNA Sequencing

Year	Genome	Technology	Cost
2001	Venter et al.	Sanger (ABI)	\$300,000,000
2007	Levy et al.	Sanger (ABI)	\$10,000,000
2008	Wheeler et al.	Roche (454)	\$2,000,000
2008	Ley et al.	Illumina	\$1,000,000
2008	Bentley et al.	Illumina	\$250,000
2009	Pushkarev et al.	Helicos	\$48,000
2009	Drmanac et al.	Complete Genomics	\$4,400

(Pushkarev et al., 2009)

Critical Computational Challenges: Alignment and Assembly of Huge Datasets

http://www.airi.org/annual-meetings/presentations 2009/09-petabyte.pdf

Hadoop MapReduce

- MapReduce is the parallel distributed framework invented by Google for large data computations.
 - Data and computations are spread over thousands of computers, processing petabytes of data each day (Dean and Ghemawat, 2004)
 - Indexing the Internet, PageRank, Machine Learning, etc...
 - Hadoop is the leading open source implementation
- Benefits
 - Scalable, Efficient, Reliable
 - Easy to Program
 - Runs on commodity computers
- Challenges
 - Redesigning / Retooling applications
 - Not Condor, Not MPI
 - Everything in MapReduce

K-mer Counting

- Application developers focus on 2 (+1 internal) functions
 - Map: input → key:value pairs
 - Shuffle: Group together pairs with same key

Map, Shuffle & Reduce All Run in Parallel

– Reduce: key, value-lists → output

Hadoop Architecture

- Hadoop Distributed File System (HDFS)
 - Data files partitioned into large chunks (64MB), replicated on multiple nodes
 - NameNode stores metadata information (block locations, directory structure)
- Master node (JobTracker) schedules and monitors work on slaves
 - Computation moves to the data, rack-aware scheduling
- Hadoop MapReduce system won the 2009 GreySort Challenge
 - Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks

Amazon Web Services

http://aws.amazon.com

- Elastic Compute Cloud (EC2)
 - On demand computing power
 - Support for Windows, Linux, & OpenSolaris
 - Starting at $8.5 \notin$ / core / hour
- Simple Storage Service (S3)
 - Scalable data storage
 - 10¢ / GB upload fee, 15¢ / GB monthly fee
- Elastic MapReduce (EMR)
 - Point-and-click Hadoop Workflows
 - Computation runs on EC2

• Given a reference and many subject reads, report one or more "good" end-toend alignments per alignable read

Methyl-Seq

Hi-C-Seq

- Find where the read most likely originated
- Fundamental computation for many assays
 - Genotyping
 RNA-Seq
 - Structural Variations
 Chip-Seq
- Desperate need for scalable solutions
 - Single human requires >1,000 CPU hours / genome

http://bowtie-bio.sourceforge.net/crossbow

- Align billions of reads and find SNPs
 - Reuse software components: Hadoop Streaming
- Map: Bowtie (Langmead et al., 2009)
 - Find best alignment for each read
 - Emit (chromosome region, alignment)
- Shuffle: Hadoop
 - Group and sort alignments by region
- Reduce: SOAPsnp (Li et al., 2009)
 - Scan alignments for divergent columns
 - Accounts for sequencing error, known SNPs

Performance in Amazon EC2

http://bowtie-bio.sourceforge.net/crossbow

	Asian Individual Genome		
Data Loading	3.3 B reads	106.5 GB	\$10.65
Data Transfer	lh:15m	40 cores	\$3.40
Setup	0h : 15m	320 cores	\$13.94
Alignment	Ih : 30m	320 cores	\$41.82
Variant Calling	I h : 00m	320 cores	\$27.88
End-to-end	4h : 00m		\$97.69

Analyze an entire human genome for ~\$100 in an afternoon. Accuracy validated at >99%

Searching for SNPs with Cloud Computing.

Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology.

Related Approaches

Short Read Assembly

- Genome assembly as finding an Eulerian tour of the de Bruijn graph
 - Human genome: >3B nodes, >10B edges
- The new short read assemblers require tremendous computation
 - Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
 - ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
 - SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

K-mer Counting

- Application developers focus on 2 (+1 internal) functions
 - Map: input → key:value pairs
 - Shuffle: Group together pairs with same key

Map, Shuffle & Reduce All Run in Parallel

– Reduce: key, value-lists → output

Graph Construction

- Application developers focus on 2 (+1 internal) functions
 - Map: input → key:value pairs
 - Shuffle: Group together pairs with same key

Map, Shuffle & Reduce All Run in Parallel

– Reduce: key, value-lists → output

Graph Compression

- After construction, many edges are unambiguous
 - Merge together compressible nodes
 - Graph physically distributed over hundreds of computers

Distributed Graph Processing

MapReduce Message Passing

Input: – Graph stored as node tuples	A: (N E:B W:42) B: (N E:I,J,K W:33)
Мар	A: (N E:B W:42)
 For all nodes, re-emit node tuple 	B: (V A 42)
 For all neighbors, emit value tuple 	B: (N E:I,J,K W:33)
Shuffle	
 Collect tuples with same key 	B: $(N \ E: I, J, K \ W: 33)$
	B: (V A 42)
Reduce Add together values, save updated node tuple 	B: (<i>N</i> E:I,J,K W:75)

Iterative Path Compression

Iteratively identify and collapse the beginning of each chain

Map:

 Emit messages to the neighbors of the head of each chain

Reduce:

- Update links, node label
- Repeat until no compressible nodes

Requires S MapReduce cycles, where S is the length of the longest linear path

- B. anthracis: L=5.2Mbp S=268,925
- *H. sapiens* chr 22: L=49.6Mbp S=33,832
- *H. sapiens* chr I: L=247.2Mbp S=37,172

Fast Path Compression

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign (H)/T to each compressible node
- Compress (Ĥ→T) links

Performance

- Compress all chains in log(S) rounds (<20)
- If <1024 nodes to compress (from any number of chains), assign them all to the same reducer (save 10 rounds)

Randomized Speed-ups in Parallel Computation.

Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Node Types

Isolated nodes (10%)

Contamination

Tips (46%)

- Clip short tips

Bubbles/Non-branch (9%)

Pop bubbles

Dead Ends (.2%)

Split forks

Half Branch (25%)

– Unzip

Full Branch (10%)

- Thread reads, cloud surfing

(Chaisson, 2009)

Scalable Genome Assembly with MapReduce

- Genome: E. coli 4.6Mbp bacteria
- Input: 20M 36bp reads, 200bp insert
- Preprocessor: Quality-Aware Error Correction

Contrail

http://contrail-bio.sourceforge.net

Assembly of Large Genomes with Cloud Computing.

Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

Scalable Genome Assembly with MapReduce

- Genome: African male NAI8507 (Bentley et al., 2008)
- Input: 3.5B 36bp reads, 210bp insert (SRA000271)
- Preprocessor: Quality-Aware Error Correction

Assembly of Large Genomes with Cloud Computing.

Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

Contrail

http://contrail-bio.sourceforge.net

Selected Related Work

AutoEditor & AutoJoiner

Improving Genome Assemblies without Resequencing

> (Gajer, Schatz, Salzberg, 2004) (Carlton *et al.*, 2007)

PhyloTrac

Integrated survey analysis of prokaryotic communities

(Schatz, Phillippy, et al., 2010*)

AMOS Hawkeye

Hawkeye

Assembly Visualization & Analytics

(Schatz, Phillippy, Shneiderman, Salzberg, 2007)

Graph Summarization

Revealing Biological Modules via Graph Summarization.

(Navlakha, Schatz, Kingsford, 2008)

Assembly Forensics

Finding the Elusive Mis-assembly

(Phillippy, Schatz, Pop, 2008)

Transgenic Hunt

Characterization of Insertion Sites in Rainbow Papaya

(Suzuki et al., 2008)

Research Directions

- Scalable Sequencing
 - Genomes, Metagenomes, *-Seq, Personalized Medicine
 - How do we survive the tsunami of sequence data?
 - $\,\circ\,$ Efficient indexing & algorithms, multi-core & multi-disk systems
- Practically Parallel
 - Managing n-tier memory hierarchies, crossing the PRAM chasm
 - How do we solve problems with 1000s of cores?
 - Locality, Fault Tolerance, Programming Languages & Parallel Systems
- Computational Discovery
 - Abundant data and computation are necessary, but not sufficient
 - How do we gain insight?
 - Modeling, Machine Learning, Databases, Visualization & HCI

Summary

"NextGen sequencing has completely outrun the ability of good bioinformatics people to keep up with the data and use it well... We need a MASSIVE effort in the development of tools for 'normal' biologists to make better use of massive sequence databases."

Jonathan Eisen – JGI Users Meeting – 3/28/09

- Computational Biology
 - Make the problems of genotyping and assembly of large genomes from short reads feasible and accessible to individual researchers
- High Performance Computing
 - Developed Novel Parallel Algorithms for MapReduce and Multicore systems

Acknowledgements

Advisor

Steven Salzberg

UMD Faculty

Mihai Pop, Art Delcher, Amitabh Varshney, Carl Kingsford, Ben Shneiderman, James Yorke, Jimmy Lin, Dan Sommer

CBCB Students

Adam Phillippy, Cole Trapnell, Saket Navlakha, Ben Langmead, James White, David Kelley

Thank You!

http://www.cbcb.umd.edu/~mschatz