GPGPU and Cloud Computing for DNA Sequence Analysis

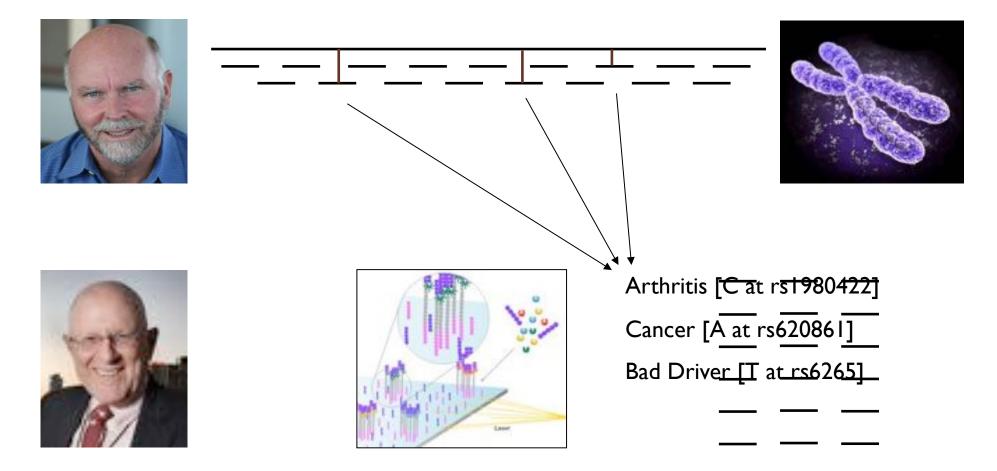
Michael C. Schatz

Nov. 19, 2009 Doctoral Showcase, SC09

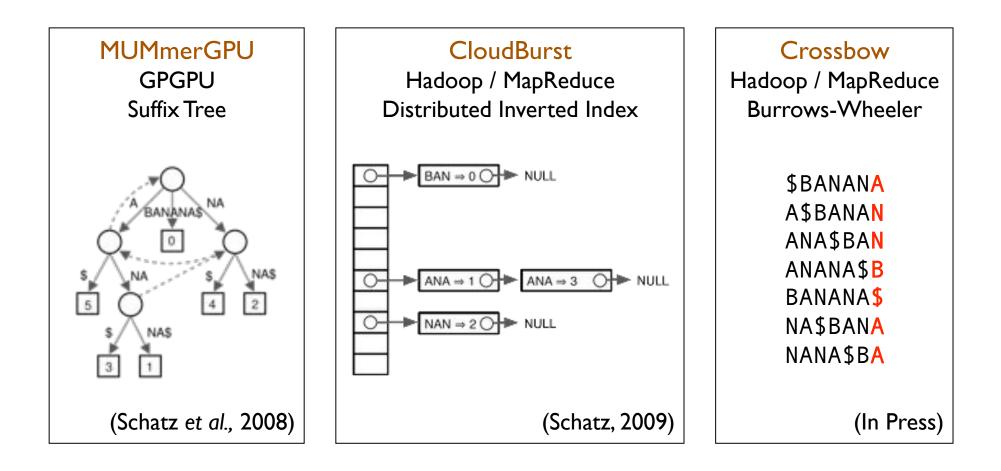
The Evolution of DNA Sequencing

Year	Genome	Technology	Cost
2001	Venter et al.	Sanger (ABI)	\$300,000,000
2007	Levy et al.	Sanger (ABI)	\$10,000,000
2008	Wheeler et al.	Roche (454)	\$2,000,000
2008	Ley et al.	Illumina	\$1,000,000
2008	Bentley et al.	Illumina	\$250,000
2009	Pushkarev et al.	Helicos	\$48,000
2009	Drmanac et al.	Complete Genomics	\$4,400
			Pushkarev <i>et al.</i> , 2009)

1000 Genomes

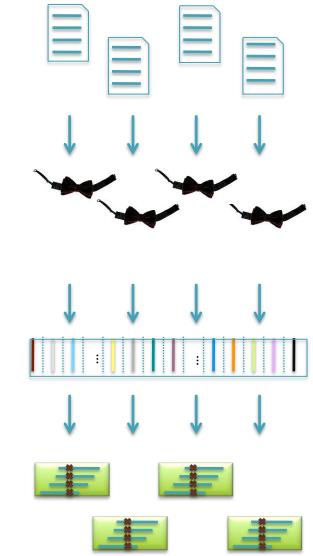

Global Ocean Survey

Human Microbiome


Personal Genomics

What's in your genome?

Indexing & Throughput


- Desperate need for scalable solutions
 - Individual Genome: 3.3 Billion 35bp, 106.5 GB (Wang et al., 2008)
 - Read Mapping required >1,000 CPU hours / genome

Crossbow

http://bowtie-bio.sourceforge.net/crossbow

- Align billions of reads and find SNPs
 - Reuse software components: Hadoop Streaming
- Map: Bowtie (Langmead et al., 2009)
 - Align reads to BWT index of reference
 - Emit (chromosome region, alignment)
- Shuffle: Hadoop
 - Group and sort alignments by region
- Reduce: SOAPsnp (Li et al., 2009)
 - Scan alignments for divergent columns
 - Output all SNPs

Crossbow at Amazon EC2

http://bowtie-bio.sourceforge.net/crossbow


	Asian Individual Genome		
Data Loading	3.3 B reads	106.5 GB	\$10.65
Data Transfer	lh :15m	20+1 Medium	\$3.40
Setup	0h : I 5m	40+1 X-Large	\$13.94
Mapping	lh : 30m	40+1 X-Large	\$41.82
Variant Calling	lh:00m	40+1 X-Large	\$27.88
End-to-end	4h : 00m		\$97.69

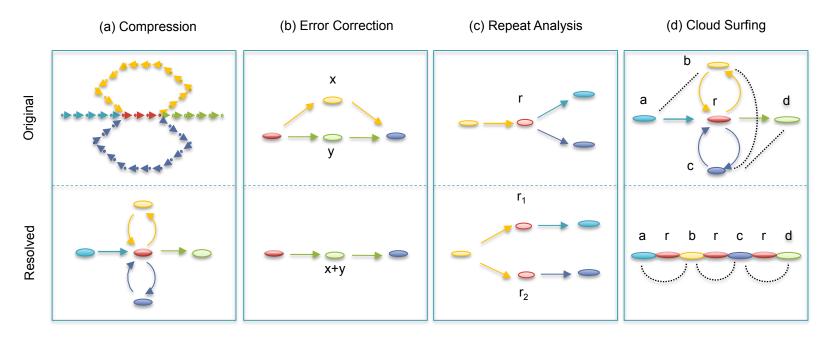
Raw sequences to SNPs for ~\$100 in an afternoon. Accuracy validated at better than 99%

Searching for SNPs with Cloud Computing.

Langmead, B, Schatz, MC, Lin, J, Pop, M, Salzberg, SL (2009) In Press.

Genomics without a reference

 Graph assembly modeled as finding an Eulerian tour through the de Bruijn graph


- Human genome: ~3B nodes, ~10B edges
- The new short read assemblers require tremendous computation
 - Velvet (Zerbino & Birney, 2008) on human > 2 TB of RAM
 - ABySS (Simpson et al., 2009) on human ~4 days on 168 cores

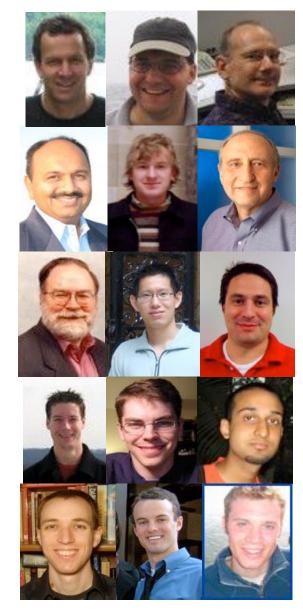
Contrail http://contrail-bio.sourceforge.net

Scalable Genome Assembly with MapReduce

- Parallel Randomized List Ranking: merge non-branching nodes
- Parallel Network Motif Finding: recognize graph topology
- Parallel Frontier Search: breadth-first-search of neighborhood

Assembly of Large Genomes with Cloud Computing. Schatz, MC, Sommer, D, Pop, M, et al. In Preparation.

Genomics across the Tree of Life

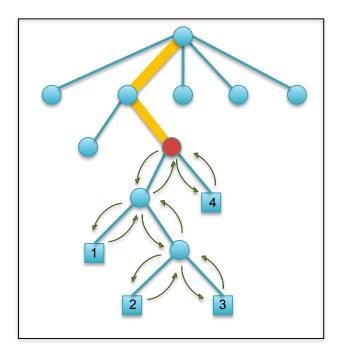


Genomes

- *N. ceranae* (Cornman *et al.*, 2009)
- B. taurus (Zimin et al., 2009)
- G. indiensis (Desjardins et al., 2009)
- *C. papaya* (Ming et al., 2008)
- C. papaya (Suzuki et al., 2008)
- X. oryzae (Salzberg et al., 2008)
- T. vaginalis (Carlton et al., 2007)
- Drosophila (Drosophila 12 genomes consortium, 2007)
- A. aegypti (Nene et al., 2007)
- B. malayi (Ghedin et al., 2007)
- G. indiensis (Desjardins et al., 2007)
- Campylobacter (Fouts *et al.*, 2005)

Acknowledgements

- Advisor
 - Steven Salzberg
- UMD Faculty
 - Mihai Pop, Art Delcher, Amitabh Varshney, Carl Kingsford, Ben Shneiderman, James Yorke, Jimmy Lin, Dan Sommer
- CBCB Students
 - Adam Phillippy, Cole Trapnell,
 Saket Navlakha, Ben Langmead,
 James White, David Kelley

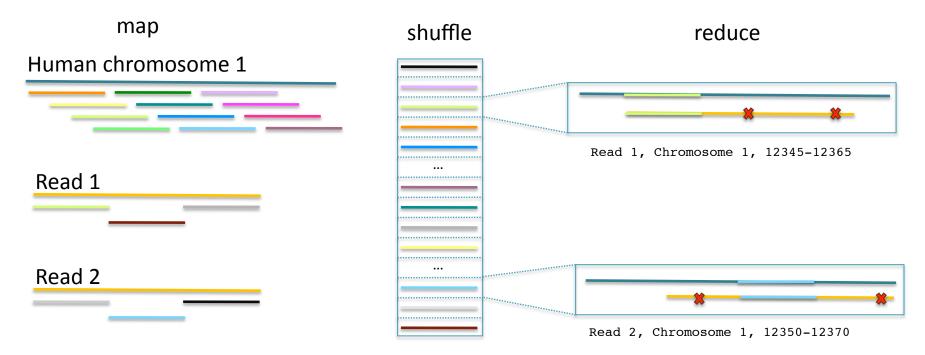

Thank You!

http://www.cbcb.umd.edu/~mschatz

MUMmerGPU

http://mummergpu.sourceforge.net

- Index reference using a suffix tree
 - Each suffix represented by path from root
 - Reorder tree along space filling curve
- Map many reads simultaneously on GPU
 - Find matches by walking the tree
 - Find coordinates with depth first search
- Performance on nVidia GTX 8800
 - Match kernel was ~10x faster than CPU
 - Search kernel was ~4x faster than CPU
 - End-to-end runtime ~4x faster than CPU



Optimizing data intensive GPGPU computations for DNA sequence alignment. Trapnell C, Schatz MC. (2009) *Parallel Computing*. 35(8-9):429-440.

- Leverage Hadoop to build a distributed inverted index of k-mers and find end-to-end alignments
- 100x speedup over RMAP with 96 cores at Amazon EC2

CloudBurst: Highly Sensitive Read Mapping with MapReduce.

Schatz MC (2009) Bioinformatics. 25:1363-1369

Grand Challenge of Biology

"NextGen sequencing has completely outrun the ability of good bioinformatics people to keep up with the data and use it well... We need a MASSIVE effort in the development of tools for "normal" biologists to make better use of massive sequence databases."

Jonathan Eisen – JGI Users Meeting – 3/28/09

- Computational Biology
 - Make the analysis of large genomes accessible to individual researchers
- HPC
 - Research parallel algorithms for MapReduce and multicore systems