Scalable Solutions for DNA Sequence Analysis

Michael Schatz

December 15, 2009 Hadoop User Group

Shredded Book Reconstruction

Dickens accidently shreds the only 5 copies of <u>A Tale of Two Cities</u>

• Text printed on long spools

It was	thevbestheft	es tinfes ini	itsyas what wh	perstor of	times,	it was the	a gge fo	fv ivsistdom i,	t itvwas h	abe ageo	ofitodistaness,	•••
It was	filmentesthe	of times	it was the	worst	of times	it was th	e three are	wishtisnloi	thwits the	avagethefag	xhightneolishne	285
		or tilleo,				, ie was ui	- age age					<u>, , , , , , , , , , , , , , , , , , , </u>
It was	thevasberget k	esimesiri	tewais walsel	wowstrof t	imes,eit	, it was th	e age of v	wisdom, i	it was t	the age of	i stoolisis ness,	,
It was	t the shelse i	esinoesini	ies, was abet	wowstrof t	i mės ,es	it was the	e age of	vi sciscio,ni	t, itavatshi	thegagef for	ofisionisispess,	,
It w	alt thæsbidset i	DÉsime sin	eit, vitasvatheth	wowstrof	f times	, it was th	e age of c	wizalsabomi	t, ivtavsatsho	thange onlighto o	ofistoplistaness,	,

- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

Greedy Reconstruction

The repeated sequence makes the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model sequence reconstruction as a graph problem.

de Bruijn Graph Construction

- $D_k = (V, E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

Genomics

Your genome influences (almost) all aspects of your life

- Anatomy & Physiology: 10 fingers & 10 toes, organs, neurons
- Diseases: Sickle Cell Anemia, Down Syndrome, Cancer
- Psychological: Intelligence, Personality, Bad Driving

Your environment also plays a big role

- Recipe, not a blueprint

The Evolution of DNA Sequencing

Year	Genome	Technology	Cost
2001	Venter et al.	Sanger (ABI)	\$300,000,000
2007	Levy et al.	Sanger (ABI)	\$10,000,000
2008	Wheeler et al.	Roche (454)	\$2,000,000
2008	Ley et al.	Illumina	\$1,000,000
2008	Bentley et al.	Illumina	\$250,000
2009	Pushkarev et al.	Helicos	\$48,000
2009	Drmanac et al.	Complete Genomics	\$4,400

(Pushkarev et al., 2009)

Critical Computational Challenges: Alignment and Assembly of Huge Datasets

DNA Sequencing

Genome of an organism encodes the genetic information in long sequence of 4 DNA nucleotides: ACGT

- Bacteria: ~3 million bp
- Humans: ~3 billion bp

Current DNA sequencing machines can generate I-2 Gbp of sequence per day, in millions of short reads

- Per-base error rate estimated at 1-2% (Simpson et al, 2009)

ATCTGATAAGTCCCAGGACTTCAGT GCAAGGCAAACCCGAGCCCAGTTT TCCAGTTCTAGAGTTTCACATGATC GGAGTTAGTAAAAGTCCACATTGAG Recent studies of entire human genomes analyzed 3.3B (Wang, et al., 2008) & 4.0B (Bentley, et al., 2008) 36bp reads

~100 GB of compressed sequence data

DNA Resequencing

CloudBurst

Highly Sensitive Read Mapping with MapReduce

(Schatz, 2009)

Parallel Distributed Hashing 100x speedup on 96 cores at EC2 http://cloudburst-bio.sf.net

Crossbow

Searching for SNPs with Cloud Computing

(Langmead, Schatz, Lin, Pop, Salzberg, 2009)

Scaling up mapping and genotyping Reads to SNPs for <\$100 in <3 hours http://bowtie-bio.sf.net/crossbow

De novo assembly with MapReduce

Problem

- Current assemblers require tremendous computation
- Human genome requires TBs of RAM and many CPU years

Advantages

- Proven system for processing huge datasets
 - PageRank: Significance in web graph of >1 trillion pages
 - CloudBurst & Crossbow: Genome mapping
- Simple programming model
 - Reliability, redundancy, scalability built-in

Challenges

- How to (efficiently) implement assembly graph algorithms?
 - Restricted programming model (not MPI, not shared memory)
 - Adjacent nodes may be stored on different machines

K-mer Counting

- Application developers focus on 2 (+1 internal) functions
 - Map: input → key:value pairs
 - Shuffle: Group together pairs with same key

Map, Shuffle & Reduce All Run in Parallel

– Reduce: key, value-lists → output

Graph Construction

- Application developers focus on 2 (+1 internal) functions
 - Map: input → key:value pairs
 - Shuffle: Group together pairs with same key

Map, Shuffle & Reduce All Run in Parallel

– Reduce: key, value-lists → output

Graph Compression

- After construction, many edges are unambiguous
 - Merge together compressible nodes

Find Compressible Nodes

Input: Graph stored as (n : (nodeinfo, ni))

Map:

- For all nodes, emit (n : (nodeinfo, ni))

MapReduce Message Passing

- If node n has unique predecessor p, emit (p : (unique-pred, n))

Reduce:

- If node n has unique successor s, and received (unique-pred, s),
 - Mark ni as compressible
- Save (n : (nodeinfo, ni))

Compressible

Not Compressible

Linear Path Compression

Iteratively identify and collapse the beginning of each chain

Map:

- Emit messages to the neighbors of the head of each chain

Reduce:

- Update links, node label

Requires S MapReduce cycles, where S is the length of the longest simple path

- B. anthracis: L=5.2Mbp S=268,925 bp •
- L=49.6Mbp S=33,832 bp H. sapiens chr 22:
- H. sapiens chr 1: L=247.2Mbp S=37,172 bp ٠

Fast Path Compression

Challenges

- Nodes stored on different computers
- Node only knows immediate neighbors

Randomized List Ranking

- Randomly assign (H)/T to each compressible node
- Compress (H)->T links
- (Vishkin, 1984)

Optimizations

- Always compress ends of chains
- If <1000 nodes to compress, send them all to the same reducer

Parallel Randomized List Ranking

Node Types

Isolated nodes (10%)

Contamination

Tips (46%)

Clip short tips

Bubbles/Non-branch (9%)

Pop bubbles

Dead Ends (.2%)

Split forks

Half Branch (25%)

– Unzip

Full Branch (10%)

- Thread reads, cloud surfing

(Chaisson, 2009)

Error Correction

Sequencing error distorts graph structure

- Errors at end of read
 - Trim off 'dead-end' tips
 - B' passes trim message to A

- Errors in middle of read
 - Pop Bubbles
 - B' and B pass *bubble* messages to A
 - A is lexicographically smaller than C

- Recursively apply, rerun path compression between each iteration

Parallel Network Motif Finding

Graph Simplifications

- X-cut
 - Annotate edges with spanning reads
 - Separate fully spanned nodes
 - (Pevzner et al., 2001)

В

D

• Scaffolding

- If mate pairs are available search for a path consistent with mate distance
- Use message passing to iteratively collect linked and neighboring nodes

Other simplifications possible

Scalable Genome Assembly with MapReduce

- Genome: 4.6Mbp bacteria
- Input: 4M 36bp reads, 200bp insert
- Coverage: 31x

Assembly of Large Genomes with Cloud Computing.

Schatz, MC, Sommer, D, Pop, M, et al. In Preparation.

Results coming soon

Contrail

http://contrail-bio.sourceforge.net

Summary

- Scaling up for the tidal wave of NextGen sequence data is a central challenge in biology
- 2. Hadoop & MapReduce may be the enabling technologies to stay afloat
- 3. Graph algorithms are challenging-PRAM algorithms may apply

Acknowledgements

Advisor

Steven Salzberg

UMD Faculty

Mihai Pop, Art Delcher, Amitabh Varshney, Carl Kingsford, Ben Shneiderman, James Yorke, Jimmy Lin, Dan Sommer

CBCB Students

Adam Phillippy, Cole Trapnell, Saket Navlakha, Ben Langmead, James White, David Kelley

Thank You!

http://www.cbcb.umd.edu/~mschatz @mike_schatz