Commodity computing in genomics research

Mihai Pop Mike Schatz Dan Sommer

Department of Computer Science Center for Bioinformatics and Computational Biology University of Maryland College Park

Facing a deluge of biological data

- DNA sequencing by 2012 ~ Petabytes/year
 - more than the Hadron collider (Flicek, Genom. Biol. 2009)
 - unlike physics large installed base of instruments generating data
 - personal genomics (1000 Genome project)
 - human microbiome project
 - environmental metagenomics
- Bio-medical imaging
 - better microscopes
- Other high-throughput technologies
 - mapping
 - phenotyping
 - etc...

We do not know how to:

store transfer analyze

these data-sets efficiently

The evolution of DNA sequencing

Since	Technology	Read length	Throughput/run	Throughput/hour	cost/run
1977-	Sanger sequencing	> 1000bp	4hr 400-500 kbp	100 kbp <i>25 kB</i>	\$200
2005-	454 pyrosequencing	250-400bp	4hr 100-500 Mbp	25-100 Mbp <i>6-25 MB</i>	\$13,000
2006-	Illumina/Solexa	50-100bp	3 days 2-3 Gbp	25-40 Mbp <i>6-10 MB</i>	\$3,000
2007-	ABI SOLiD	35-50bp	3 days 6-20 Gbp	75-250 Mbp <i>19-60 MB</i>	est. \$3-5,000
2008-	Helicos single molecule	25-50 bp	8 days 10 Gbp	~50 Mbp est. 1Gbp/hour <i>250 MB</i>	~\$18,000
TBA (2010)	Pacific Biosciences single molecule	100-200 kbp	?	?	?

Helicos - ~500-600 kbps throughput in just DNA letters (usually a lot more info produced) DVD ~ 8Mbps, BlueRay ~40Mbps

Can cloud computing help?

- Ease of programming
 - many biotech programmers do not have formal CS training
 - MapReduce may be "simple" enough
 - currently working with undergrad interns
- Can existing software be adapted to a parallel setting? –YES (stay tuned)
- Cost structure
 - computation as "lab consumable" instead of "infrastructure"

Can cloud computing help?...cont

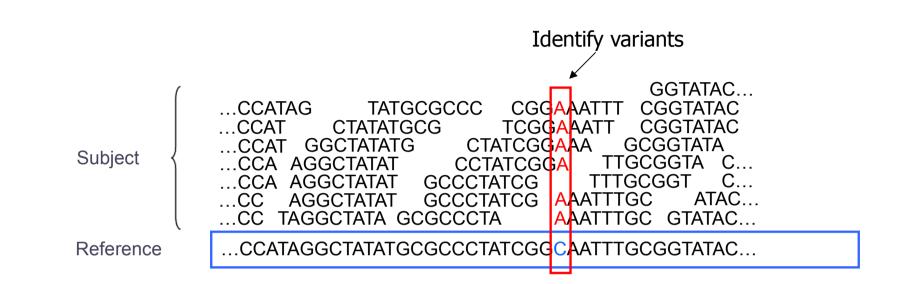
CONS/CHALLENGES

- Communication costs (local vs. remote cluster)
- Data privacy/security (HIPAA)

What bioinformatics tools work in the "cloud"?

- Various sequence alignment (string matching) tasks
 - "embarassingly" parallel
 - already successfully handled through condor/sungrid/LSF, MPI, custom parallel hardware
 - will show: work well in MapReduce (CloudBurst)
 - actually: can adapt existing software to MapReduce (Crossbow)
- Genome assembly ("best" superstring)
 - hard to parallelize (graph algorithms)
 - for most genomes many possible solutions (> 1 google)
 - limited success demonstrated in MPI, BlueGene
 - will show: can be done in MapReduce (but tricky)
 - how well? (pending)

Short Read Mapping



•Recent studies of entire human genomes analyzed billions of reads –Asian Individual Genome: 3.3 Billion 35bp, 104 GB (Wang et al., 2008) –African Individual Genome: 4.0 Billion 35bp, 144 GB (Bentley et al., 2008)

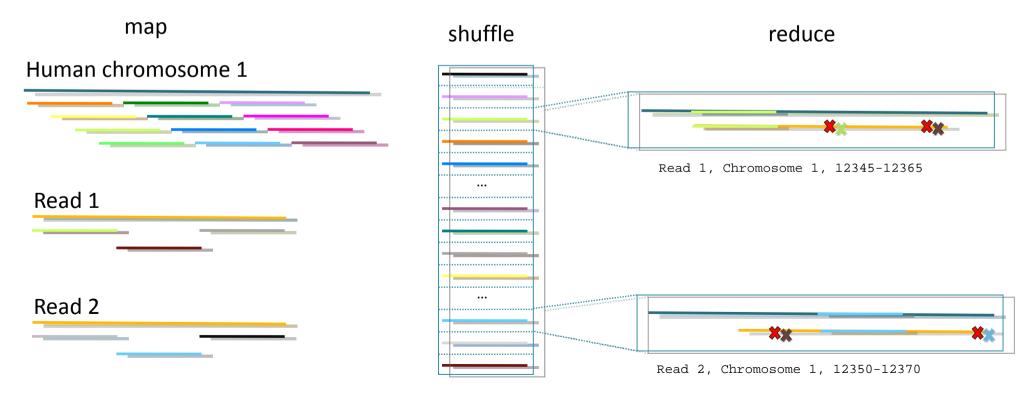
Alignment computation required >10,000 CPU hours*

-Alignments are "embarassingly parallel" by read

-Variant detection is parallel by chromosome region

CloudBurst

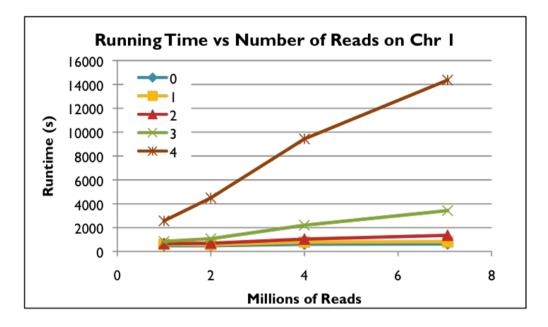
- 1. Map: Catalog K-mers
 - Emit k-mers in the genome and reads
- 2. Shuffle: Collect Seeds
 - Conceptually build a hash table of k-mers and their occurrences
- 3. Reduce: End-to-end alignment
 - If read aligns end-to-end with ≤ k errors, record the alignment

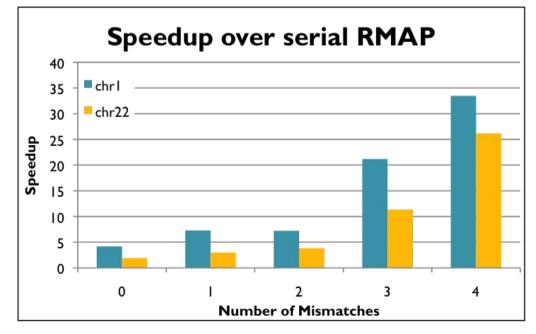


Schatz, MC (2009) CloudBurst: Highly Sensitive Read Mapping with MapReduce. Bioinformatics. 25:1363-1369

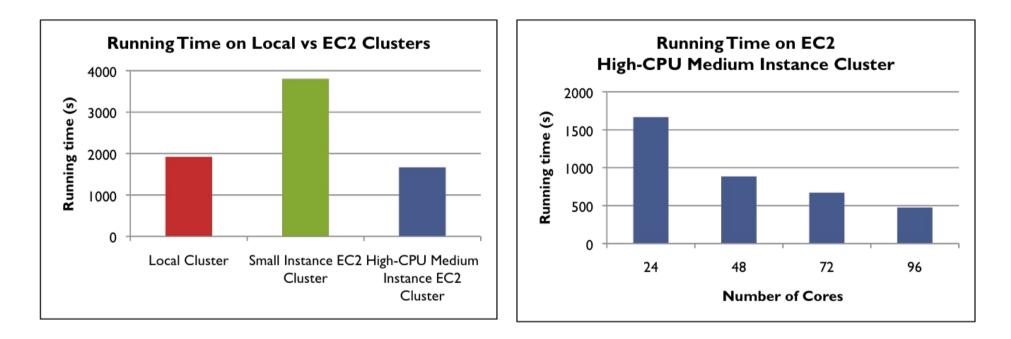
CloudBurst Results

- Evaluate running time on local 24 core cluster
 - Running time increases
 linearly with the number of reads
- Compare to RMAP
 - Highly sensitive alignments have better than 24x linear speedup.
- Produces identical results in a fraction of the time





EC2 Evaluation



•CloudBurst running times for mapping 7M reads to human chromosome 22 with at most 4 mismatches on the local and EC 2 clusters.

•The 24-core Amazon High-CPU Medium Instance EC2 cluster is faster than the 24-core Small Instance EC2 cluster, and the 24-core local dedicated cluster.

•The 96-core cluster is 3.5x faster than the 24-core, and 100x faster than serial RMAP.

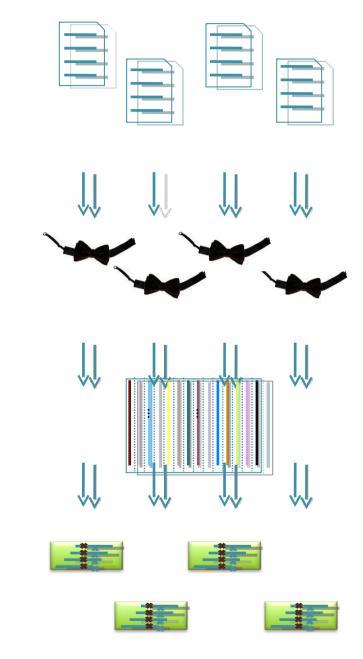
Crossbow: Rapid Whole Genome SNP Analysis

- Align billions of reads and find SNPs

 Reuse software components: Hadoop
 Streaming
- Map: Bowtie
 - Emit (chromome region, alignment)

- Shuffle: Hadoop
 - Group and sort alignments by region

- Reduce: SoapSNP (Li et al, 2009)
 - Scan alignments for divergent columns
 - Accounts for sequencing error, known SNPs



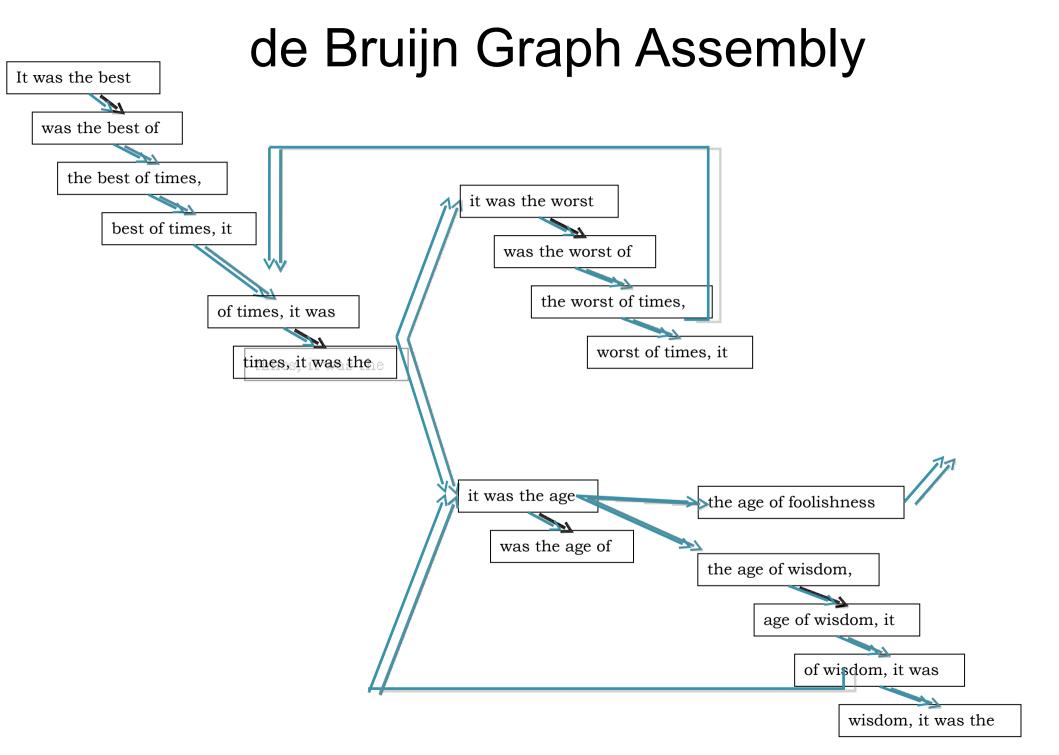
Preliminary Results: Whole Genome

	Asian Individual Genome		
Data Loading	SE: 2.0 B, 24x PE: 1.3 B, 15x	106.5 GB compressed	\$10.65
Data Transfer	l hour	39+1 Small	\$4.00
Preprocessing	0.5 hours	40+1 X-Large	\$16.40
Alignment	I.5 hours	40+1 X-Large	\$49.20
Variant Calling	I.0 hours	40+1 X-Large	\$32.80
End-to-end	4 hours		\$113.05

Goal: Reproduce the analysis by Wang et al. for ~\$100 in an afternoon.

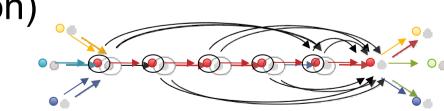
Genome assembly

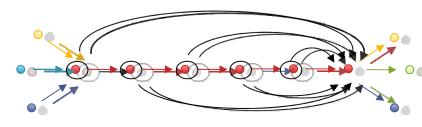
- Problem: Reconstruct a genome from a collection of (imperfect) short fragments (reads)
- Two paradigms:
 - de Bruijn graph (Pevzner):
 - nodes = k-mers; edges = adjacent k-mers overlap by k-1 letters
 - string/overlap graph (Myers):
 nodes = reads; edges = adjacent reads are overlapping
- Both translate into finding an Eulerian/Chinese postman path or cycle

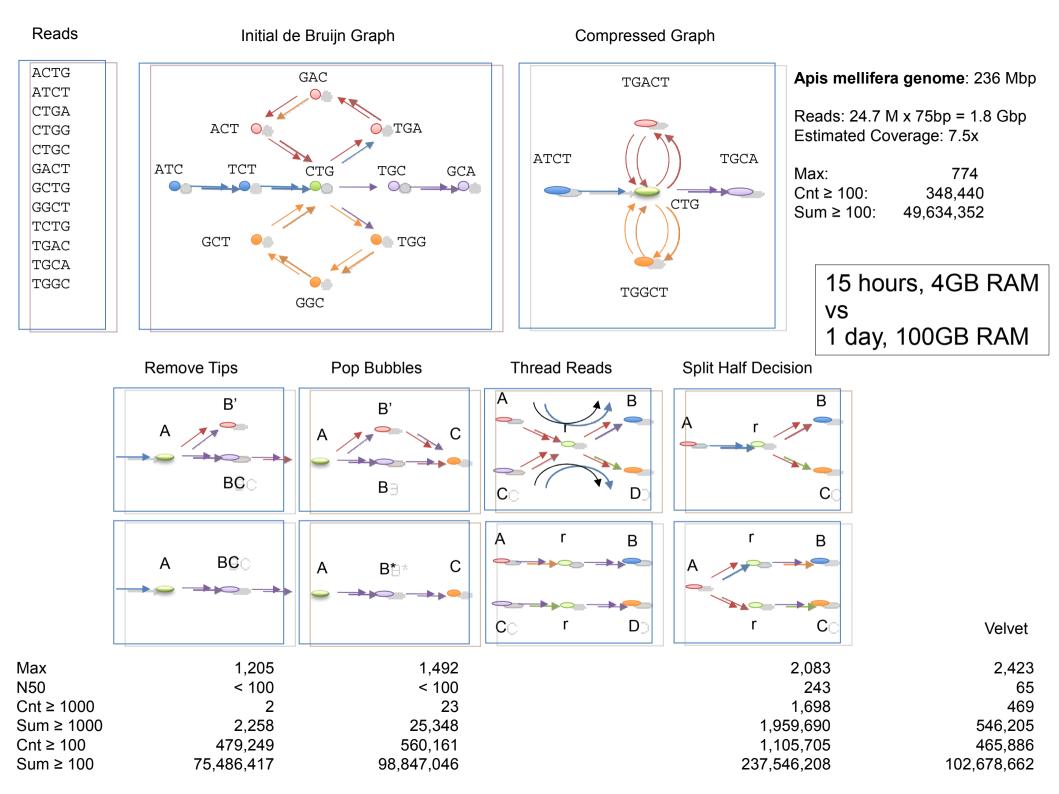


deBruijn assembly in the cloud

- Graph construction:
 - Map: Scan reads and emit (ki,ki+1) for consecutive k-mers (also consider reverse complement k-mers, build bi-directed graph)
 - Reduce: Save adjacency representation of graph (n, nodeinfo)
- Graph simplifications:
 - collapse simple paths (pointer jumping)
 - clean up errors (spurs & bubbles)
 - collapse trees of cycles
 (regions w/ unique reconstruction)

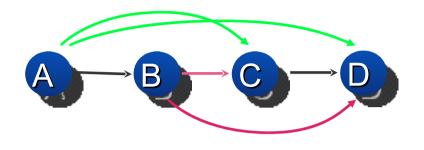






String graph assembly

- Similar problems with deBruijn
- Some new challenges:
 - transitive edge removal
 - can be handled through parallel set operations:
 <u>Graph</u>
 A->B,C,D
 B->C,D
 C->D



<u>Map</u> A->B,C,D => (B; A->B,C,D) (A; A->B,C,D) B->C,D => (B; B->C,D) (C; B->C,D)

<u>Reduce</u> (B; A->B,C,D) (B; B->C,D) => A->B

Conclusions

- Trading CPUs for RAM works: data-intensive computing is possible in the cloud
- Embarassingly parallel problems fairly easy (though not trivial)
- Load balancing tricky (esp. in assembly)
- Network bandwidth is critical

BUT

Biologists ecstatic!

Acknowledgments

Ben Langmead (now at JHU)

Cole Trapnell

Dan Sommer

Steven Salzberg

Jimmy Lin

Fritz McCall

Miron Livny (U. Wisconsin)

Deepak Singh (Amazon)

NSF IIS-0844494