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Facing a deluge of biological data
• DNA sequencing – by 2012 ~ Petabytes/year 

– more than the Hadron collider (Flicek, Genom. Biol. 2009)
– unlike physics – large installed base of instruments generating 
data

– personal genomics (1000 Genome project)
– human microbiome project 
– environmental metagenomics

• Bio-medical imaging 
– better microscopes

• Other high-throughput technologies
– mapping
– phenotyping
– etc...



We do not know how to:

store
transfer
analyze

these data-sets efficiently



The evolution of DNA sequencing

Since Technology Read length Throughput/run Throughput/hour cost/run
1977- Sanger 

sequencing
> 1000bp 4hr

400-500 kbp
100 kbp

25 kB
$200

2005- 454 
pyrosequencing

250-400bp 4hr
100-500 Mbp

25-100 Mbp
6-25 MB

$13,000

2006- Illumina/Solexa 50-100bp 3 days
2-3 Gbp

25-40 Mbp
6-10 MB

$3,000

2007- ABI SOLiD 35-50bp 3 days
6-20 Gbp

75-250 Mbp
19-60 MB

est. $3-5,000

2008- Helicos
single molecule

25-50 bp 8 days
10 Gbp

~50 Mbp
est. 1Gbp/hour

250 MB

~$18,000

TBA
(2010)

Pacific 
Biosciences
single molecule

100-200 kbp ? ? ?

Helicos - ~500-600 kbps throughput in just DNA letters (usually a lot more info produced)
DVD ~ 8Mbps, BlueRay ~40Mbps



Can cloud computing help?
PROS

• Ease of programming
– many biotech programmers do not have formal CS training
– MapReduce may be "simple" enough
– currently working with undergrad interns

• Can existing software be adapted to a parallel setting?
–YES (stay tuned)

• Cost structure
– computation as "lab consumable" instead of "infrastructure"



Can cloud computing help?...cont

CONS/CHALLENGES

• Communication costs (local vs. remote cluster)

• Data privacy/security (HIPAA)



What bioinformatics tools work in the "cloud"?
• Various sequence alignment (string matching) tasks

– "embarassingly" parallel
– already successfully handled through condor/sungrid/LSF, MPI, 
custom parallel hardware
– will show: work well in MapReduce (CloudBurst)
– actually: can adapt existing software to MapReduce (Crossbow)

• Genome assembly ("best" superstring)
– hard to parallelize (graph algorithms)
– for most genomes many possible solutions (> 1 google)
– limited success demonstrated in MPI, BlueGene
– will show: can be done in MapReduce (but tricky)
– how well? (pending)



Short Read Mapping

•Recent studies of entire human genomes analyzed billions of reads
–Asian Individual Genome: 3.3 Billion 35bp, 104 GB (Wang et al., 2008)
–African Individual Genome: 4.0 Billion 35bp, 144 GB (Bentley et al., 2008)

•Alignment computation required >10,000 CPU hours*
–Alignments are “embarassingly parallel” by read
–Variant detection is parallel by chromosome region
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1. Map: Catalog K-mers
• Emit k-mers in the genome and reads

Human chromosome 1

Read 1

Read 2

map

2. Shuffle: Collect Seeds
• Conceptually build a hash table of k-mers and their occurrences

shuffle

…

…

3. Reduce: End-to-end alignment
• If read aligns end-to-end with ≤ k errors, record the alignment

reduce

Read 1, Chromosome 1, 12345-12365

Read 2, Chromosome 1, 12350-12370

CloudBurst

Schatz, MC (2009) CloudBurst: Highly Sensitive Read Mapping with MapReduce. Bioinformatics. 25:1363-1369 



• Evaluate running time on 
local 24 core cluster

– Running time increases 
linearly with the number of 
reads

• Compare to RMAP
– Highly sensitive alignments 
have better than 24x linear 
speedup. 

• Produces identical results in 
a fraction of the time

CloudBurst Results



•CloudBurst running times for mapping 7M reads to human chromosome 22 with at most 4 
mismatches on the local and EC 2 clusters.

•The 24-core Amazon High-CPU Medium Instance EC2 cluster is faster than the 24-core 
Small Instance EC2 cluster, and the 24-core local dedicated cluster.

•The 96-core cluster is 3.5x faster than the 24-core, and 100x faster than serial RMAP.

EC2 Evaluation



Crossbow: Rapid Whole Genome SNP Analysis

•   Align billions of reads and find SNPs
– Reuse software components: Hadoop 
Streaming

• Map: Bowtie
– Emit (chromome region, alignment)

… …

• Shuffle: Hadoop
– Group and sort alignments by region

• Reduce: SoapSNP (Li et al, 2009)
– Scan alignments for divergent columns
– Accounts for sequencing error, known SNPs



Preliminary Results:  Whole Genome

Asian 
Individual 
Genome

Data Loading SE: 2.0 B, 24x
PE: 1.3 B, 15x

106.5 GB
compressed

$10.65

Data Transfer 1 hour 39+1 Small $4.00

Preprocessing 0.5 hours 40+1 X-Large $16.40

Alignment 1.5 hours 40+1 X-Large $49.20

Variant Calling 1.0 hours 40+1 X-Large $32.80

End-to-end 4 hours $113.05

Goal: Reproduce the analysis by Wang et al. for ~$100 in an afternoon.



Genome assembly 
• Problem: Reconstruct a genome from a collection of 
(imperfect) short fragments (reads)

• Two paradigms:
– de Bruijn graph (Pevzner): 
nodes = k-mers; edges = adjacent k-mers overlap by k-1 letters
– string/overlap graph (Myers): 
nodes = reads; edges = adjacent reads are overlapping 

• Both translate into finding an Eulerian/Chinese postman 
path or cycle



de Bruijn Graph Assembly
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deBruijn assembly in the cloud
• Graph construction:

–Map: Scan reads and emit (ki,ki+1) for consecutive k-mers
 (also consider reverse complement k-mers, build bi-directed 

graph)
– Reduce: Save adjacency representation of graph (n, nodeinfo)

• Graph simplifications:
– collapse simple paths (pointer jumping)
– clean up errors (spurs & bubbles)
– collapse trees of cycles
(regions w/ unique reconstruction)
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String graph assembly
• Similar problems with deBruijn
• Some new challenges:

– transitive edge removal
– can be handled through 
parallel set operations:
Graph
A->B,C,D
B->C,D
C->D

Map
A->B,C,D =>  (B; A->B,C,D) (A; A->B,C,D)
B->C,D => (B; B->C,D) (C; B->C,D)

Reduce 
(B; A->B,C,D)  (B; B->C,D) => A->B

AA BB CC DD



Conclusions
• Trading CPUs for RAM works: data-intensive computing is 
possible in the cloud

• Embarassingly parallel problems – fairly easy (though not 
trivial)

• Load balancing tricky (esp. in assembly)

• Network bandwidth is critical

BUT

Biologists ecstatic!
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