
High-throughput sequence alignment using
Graphics Processing Units

Michael C. Schatz and Cole Trapnell

September 20, 2007

CBCB Seminar

Sequence Alignment Applications

• A very common problem in computational biology is to find
all occurrences (or approximate occurrences) of one
sequence in another sequence

– Genome Assembly
– Gene Finding
– Comparative Genomics
– Functional analysis of proteins
– Motif discovery
– SNP analysis
– Phylogenetic analysis
– Primer Design
– Personal Genomics
– …

Personal Genomics

• How does your genome compare to Craig’s?

Heart Disease

Cancer

God Gene

Suffix Trees to the Rescue

• Tree of all suffixes of string S
– Suffix i encoded on path to leaf i
– Nodes: positions where suffixes diverge
– Edges: substrings of S
– Leaves: starting position of suffix
– Suffix Links: traverse to next suffix

• O(n) Construction
– Ukkonen’s Algorithm
– Exploits inter-suffix relationships and

suffix links

• O(k) Substring Match
– Every substring S[i,j] is a prefix of suffix i.
– Walk from root following the characters

in the query Q.
– One leaf for each occurrence of Q in T.

Suffix tree of “ACATAC$”

*858E Algorithms for Biosequence Analysis

7

5 1

3 6 2

4

C

$

TAC$
$ ATAC$

TAC$
A C

$ ATAC$

Suffix Tree Search

Suffix tree of “ACATAC$”

7

5 1

3 6 2

4

C

$

TAC$
$ ATAC$

TAC$
A C

$ ATAC$

Searching for “ATA”…

Suffix Tree Search

Suffix tree of “ACATAC$”

7

5 1

3 6 2

4

C

$

TAC$
$ ATAC$

TAC$
A C

$ ATAC$

Searching for “ATA”…

Suffix Tree Search

Suffix tree of “ACATAC$”

7

5 1

3 6 2

4

C

$

TAC$
$ ATAC$

TAC$
A C

$ ATAC$

Searching for “ATA”…

Suffix Tree Search

Suffix tree of “ACATAC$”

7

5 1

3 6 2

4

C

$

TAC$
$ ATAC$

TAC$
A C

$ ATAC$

Searching for “ATA”

found at position 3!

Suffix Tree Search

Can check next
suffix without
returning to root.

7

5 1

3 6 2

4

C

$

TAC$
$ ATAC$

TAC$
A C

$ ATAC$
Searching for “ACT”

“A”: found at positions 1, 3, & 5

“AC”: found at positions 1 & 5

“ACT”: falls off tree => Not in S

“C”: found at 2 & 6

“CT”: Not in S

“T”: Found at 4

MUMmer

• Widely used alignment program, developed for aligning
whole genomes to each other.

– Post-process exact alignment to seed longer inexact matches

• Uses MUMs as heuristic to filter less interesting results
– Generally need to use –maxmatch for read alignment

1. Construct suffix tree S of human genome

2. For each read R

1. Align R to S

2. Output alignments
This is performed sequentially
but is embarrassingly parallel.

Graphics Processing Units

The processing power of highly parallel GPUs is growing faster than CPUs.

GPGPU Programming

• Utilize the highly parallel SPMD
architecture of the GPU
– Nominally used for in parallel triangle

rendering, texture application
– Each processor executes same kernel
– Dramatic runtime improvement for

scientific applications

• CUDA Architecture
– API and runtime library to implement C

style programming of stream processors

• nVidia GeForce 8800 GTX (G80)
– 16 multiprocessors w/ 8 processors

• 128 stream processors @ 1.35 GHz
– 768 MB total on board RAM

*Image from CUDA Programming Guide

Host Programming

Allocate and copy
data to GPU

Execute Kernel

Read Results

Allocate space for
results

Kernel Programming

• Restricted form of C
– Loops & conditions allowed
– No recursive calls, no stack
– All storage must be pre-allocated from host
– Very fast numerical functions: sin(), sqrt(), log()
– Limited number of registers

• texfetch() to read memory from memory texture.
– Uses hardware accelerated 2D cache for read-only memory
– Non-cached reads and writes have high latency

• Threads execute independently
– Synchronization primitives and atomic functions available
– Small per-multiprocessor shared memory also available.

MUMmerGPU Algorithm

1. Load Reference String

2. Create Suffix Tree

3. Reorder Tree Layout

4. Load Query Strings

5. Transfer data to GPU

6. Execute Query Kernel
• Up to 128 simultaneous matches

on GPU

7. Fetch Results from GPU

8. Output results

Suffix Tree Reordering

R

0 1 2 3

4 5 6 7 8 9 11 1310 12 14 15 16 17 18 19

Cache Layout

0 2 4 6 8 10 12 14

1 3 5 7 9 11 13 15

Further down, place node and
children in same cache block

Near the root, place
all children of a node
in the same cache
block.

Tree Layout

Synthetic Reads Results

• Aligned 50-, 100-, 200-, 400-,
and 800-bp synthetically
constructed reads to the
Bacillus anthracis genome.

• Explore MUMmerGPU's
performance in the absence of
errors and over a wide variety
of query lengths.

• Each test set contained exactly
250Mbp of query sequence
divided evenly among all the
reads in the set.

Long Read Slowdown

• Kernel walks down edges of tree until
end of query or mismatch
– Different edges may be different lengths
– Typically short edges near root, long

edges further down

• Thread Divergence
– All threads on same multiprocessor must

wait to reach end of longest tree edge

• Cache Performance
– Longer reads will explore further into tree
– Less opportunities for locality

A

G

TA

C

GGCA

CCATAC

GCACGT…

Genuine Reads Results

• Aligned the reads against both strands of the chromosomal DNA for
L. monocytogenes and S. suis, and against both strands of
chromosome III of C. briggsae.

• Compare the end-to-end wall clock running time of MUMmerGPU
versus MUMmer.

3.4712035.96 ± 0.2726,592,5002,007,491Streptococcus suis

Illumina/Solexa sequencing

3.79120200.54 ± 60.516,620,4712,944,528Listeria monocytogenes

454 pyrosequencing

3.712100717.84 ± 159.442,357,66613,163,117Caenorhabditis briggsae

Sanger sequencing

Speedup# of suffix

trees (k)

Min alignment

length (l)

Query length

mean ± stdev

of

queries

Reference

Length (bp)

Reference

Genuine Reads Results

• Suffix tree construction is
only a small fraction of total
running time.

• MUMmerGPU execution time
now dominated by serial IO.

• MUMmerGPU is within 2x of
optimal speedup without
parallelizing/compressing IO.

Conclusions

• We have reduced the computation processing time for short read
resequencing & personal genomics from hours to minutes.
– Make sure you have sufficient cooling available

• Low arithmetic intensity GPGPU programs can have dramatic
performance improvements (10x) over CPU execution
– Utilizing the texture cache with careful node placement and minimizing

register use were essential to high performance

• A single GPU can supply same processing power as a small
computer cluster at a fraction of the cost
– Installing GPUs into an existing cluster can provide an order of

magnitude increase in computing capacity.

• More information:
– http://mummergpu.souceforge.net

Acknowledgements

Steven SalzbergArt Delcher Mihai PopAmitabh Varshney

UMIACS Staff

