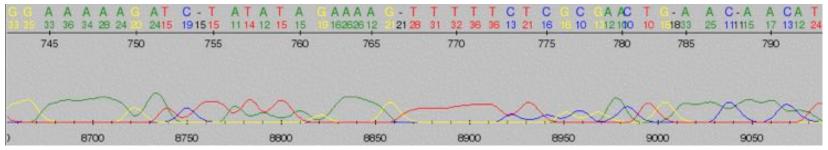
Improving Genome Assemblies without Sequencing

Michael Schatz

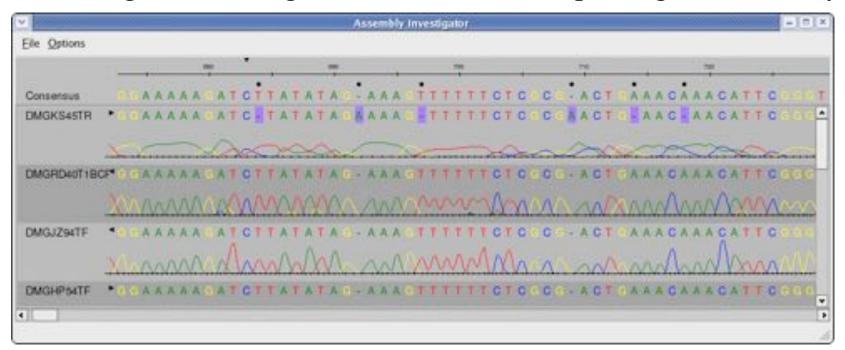
April 25, 2005 TIGR Bioinformatics Seminar

Assembly Pipeline Overview

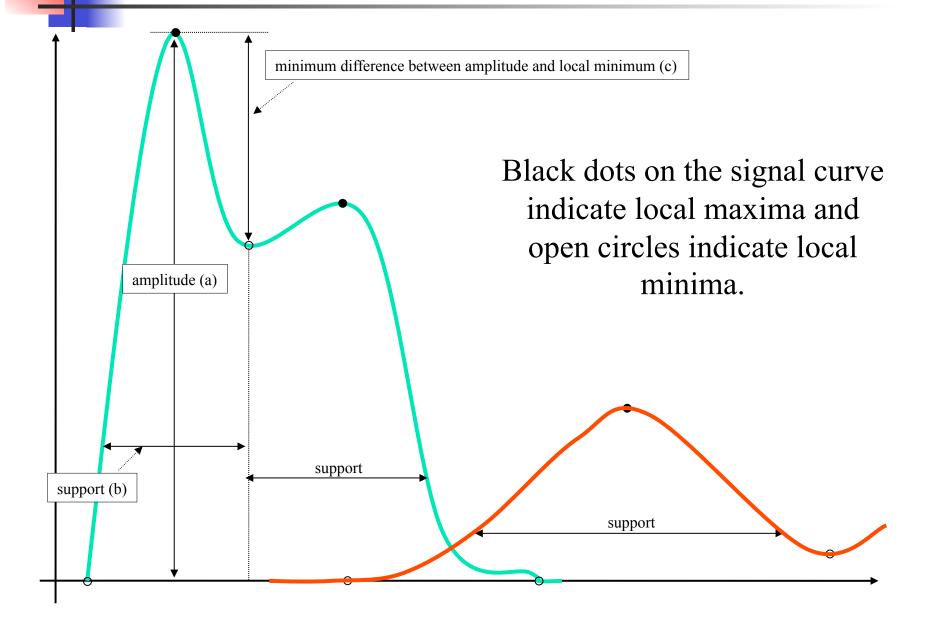
- Sequence shotgun reads 1.
- Call Bases phred/TraceTuner/KB Base Caller 2.
- Trim Reads 3.
- Assemble 4
- **Electronic Finishing** 5.
 - Second generation base-caller
 - Automatic Gap Closure
 - Research Techniques


lucy

CA/TA/Arachne

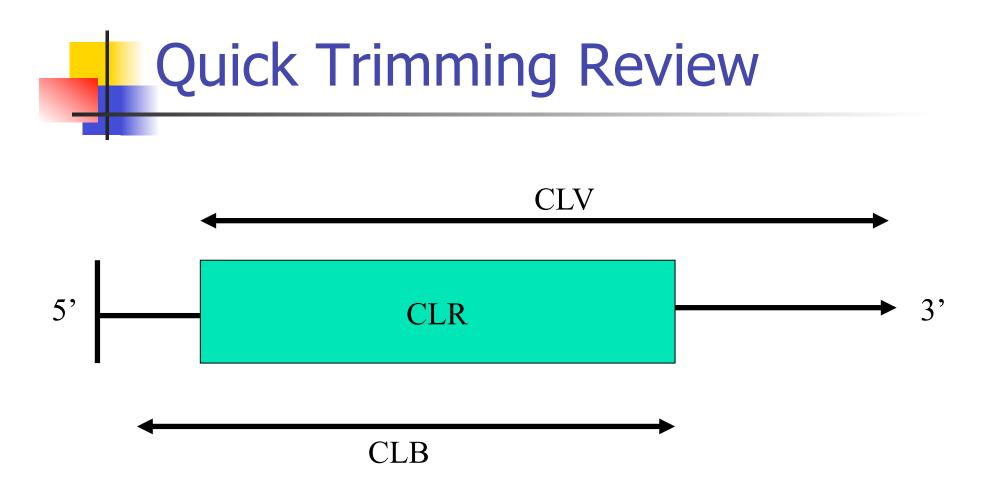

AutoEditor **AutoJoiner**

AutoEditor


Base-calling in the context of single chromatogram is hard...

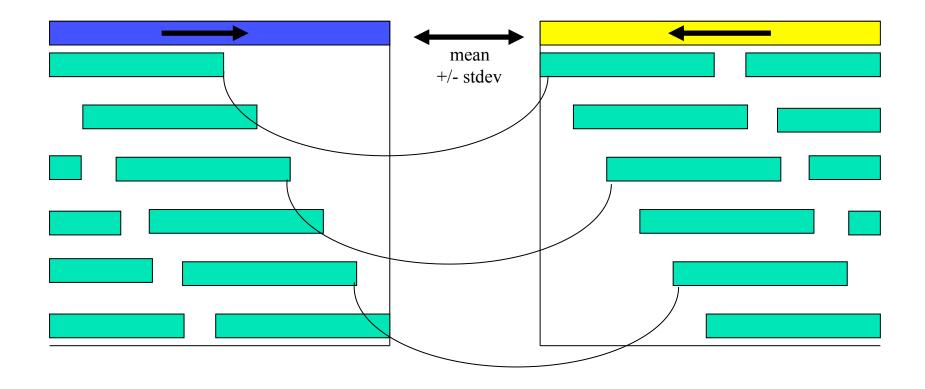
but finding base-calling "mistakes" in a multiple alignment is easy.

Signal Parameters

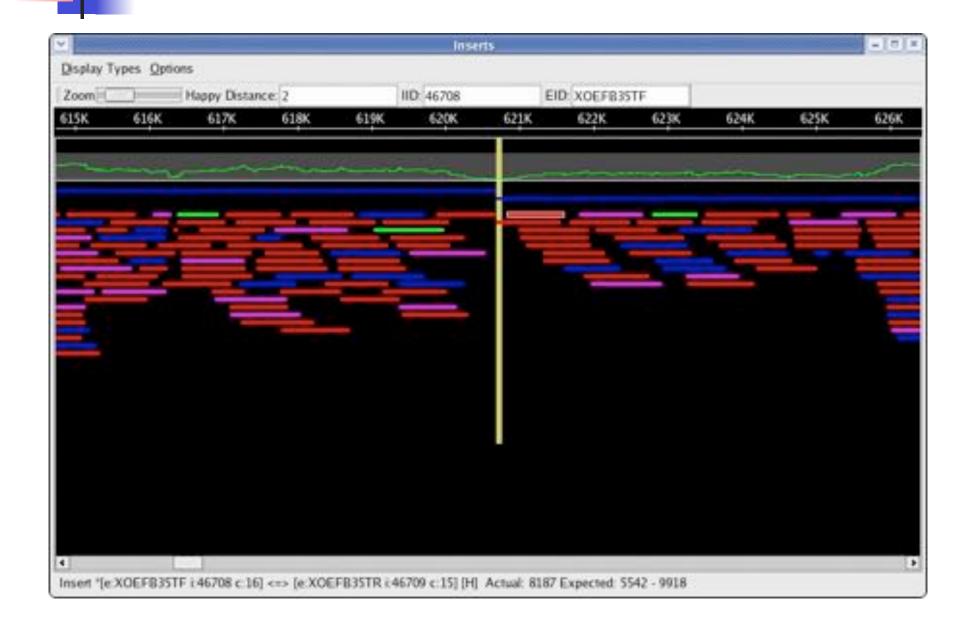


AutoEditor Results

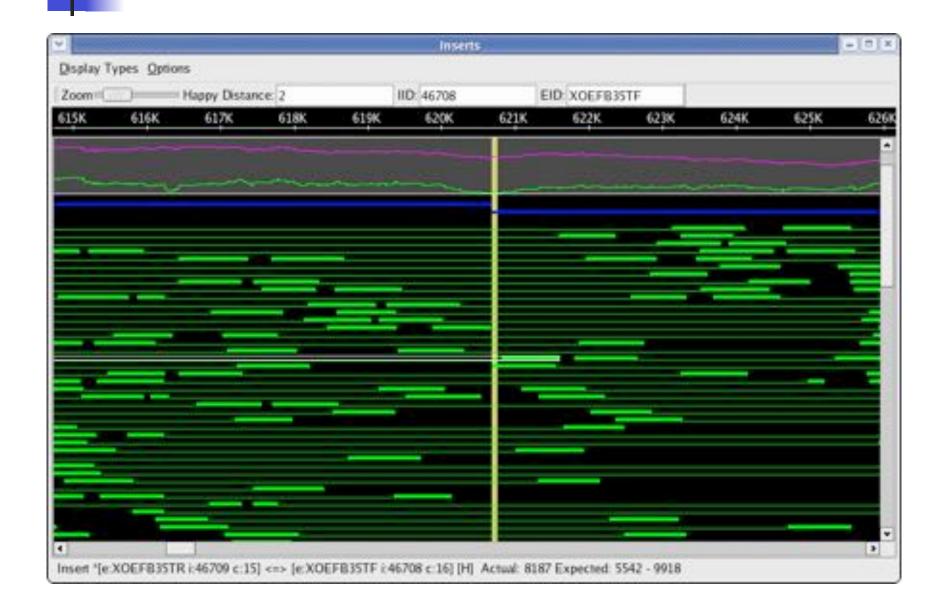
- Corrects 80% of all discrepant base-calls with an error rate better than 1/8800.
- Increase consensus quality, decrease finishing costs
- Remaining discrepancies highlight assembly problem regions or interesting biological events.


Organism	Read length	Corrections	AE errors
Listeria monocytogenes	37 420 828	145 274	4
Wolbachia sp.	11 446 011	51 163	0
Burkholderia mallei	47 407 080	99 711	28
Brucella suis	26 629 877	112 359	2
Streptococcus agalactíae	23 485 615	105 878	3
Coxiella burnetii	29 135 115	117 232	30
Campylobacter jejuni	15 013 845	792 37	11
Chlamydophila caviae	10 286 694	36 972	6
Dehalococcoides ethenogenes	10 724 521	46 416	12
Neorickettsia sennetsu Miyayama	8 805 232	37 425	0
Fibrobacter succinogenes	46 463 268	196 150	4
Mycoplasma capricolum	9 353 819	15 444	0
Prevotella intermedia	20 084 365	94 162	3
Pseudomonas syringae	50 369 232	177 897	46
Total	346 625 502	1 315 320	149

Ask Pawel for more information!


Trimming identifies the regions of good quality for the assembler to use (CLR), as the intersection of the region free of vector (CLV) and the region free of bad quality (CLB).

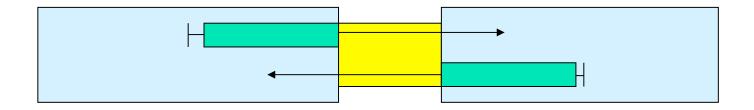
Quick Assembly Review



The individual reads (green) have been assembled into 2 contigs (blue & yellow). The mate relationship between the reads allows for the contigs to be oriented and the gap size to be estimated.

Read Coverage

Sequencing Gap


AutoJoiner Architecture

- 1. All-vs-All Alignment
- 2. Analyze Alignments
- 3. Extend and

Join Contigs

- 4. Contig Fattening
- 5. AutoEdit Result

autoJoin
nucmer
aj_evaluateOverlaps
aj_joinContigs
fattenSlice
zipclap
fattenSlice
autoEditor

All-vs-All Alignment

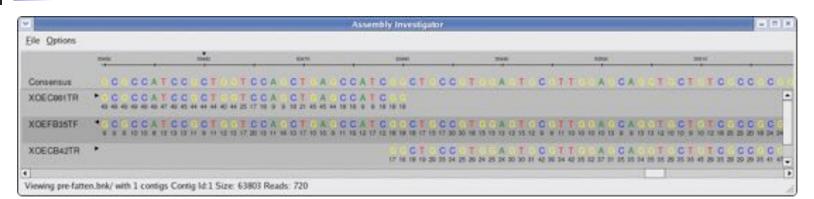
Eile Edt	Tools S	ynta	x But	tters	Wine	low	Help	0											
000		P	8	0 6		_	4	1	20	3	3	6				i.			-
35001 53419 1012 769 % show al	ords +rc1 35998 53479 1133 980 igns out. ents betw alignment	del een	1023 1023 285 1023 te 104 10472	14 963 405 813 172838 283841	5474	and	227B	1010 61 121 211 3579 FB357		10(9) 91		1	53479 53479 1163 980	1023 1023 1023 1023	Ì	1047283847434 1047283847434 XODA9057P XOEC861TR	XOEFB35TF XOEFB35TF XOEFB35TF XOEFB35TF		1
53419 1023	togttog togttog																		1
53468 974	ctgagco ctgagco																		
END	alignment	t	+1 534	119 -	534	79 1	-1	1023	- 9	63 (£ .,								
										***									-
																	.60	Top	

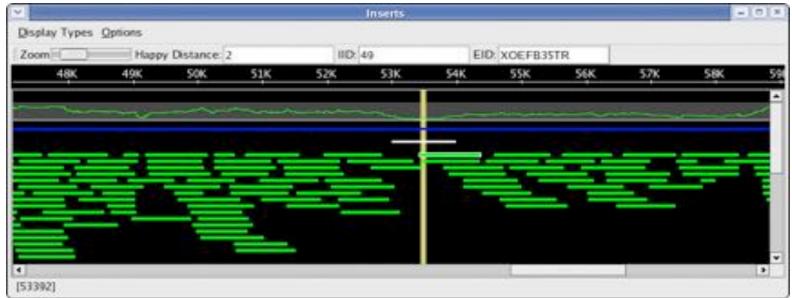
The first AutoJoiner!

Alignment Reports

werlap.report (/local/asmg/scratch/ment-1047283847434-1047283847435) - GVIM3	- = ×
Elle Edit Tools Syntax Buffers Window Help		
<pre>I047283847434(BE) <-> 1047283847435(BE) 6.547 [171.273] I1 Gap: 12 Id*Dist: 61.00 (100.00%) Gverhang: 0 (x12+,x1+,1,1) 28: 1047283847434 <-> XOEFB35TF 100.00% 61bp ##1047283847434(0) [] 53479. <1 53479> [1 53479] (53419 53479) 53479 #XOEFB35TF(134) IRC1 797. <135 931> 1830 341 (1023 963) 965 [-58 2]</pre>	53419 53479	*
[(E)] <=(B) ()=] Eval: id len dir t18(0 ·58) gap(0,·2,·2) 3'() 5'(q) ex(q) success.		
2=1047283847434 0 1047283847435 0 qex XOEFB35TF 193 ⊕ ⊕	1.1	- A11

Why did AutoJoiner make this join?

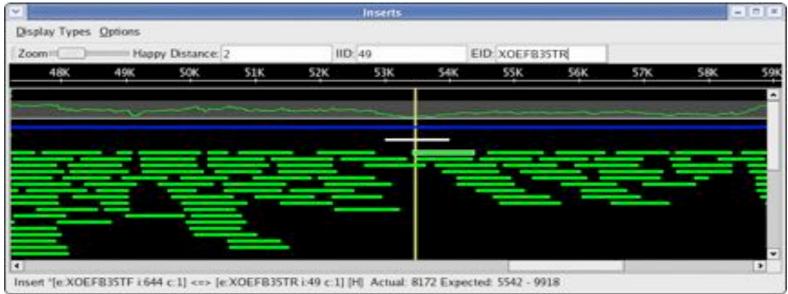

Contig Extension


Assembly Invest	ligator				×
Eile Options					
Position 110	2 + > Contig ID 16	Chromo DB Xoc	Inserts Contig (Graph A' A' Find	< +
-	110	120	130	140	130
Consensus	CTCAACC	A C (C C T A C C A	CCTSTCCSA		TOCOAACOT
XOECB42TR		A C C C T A C A		T G A A C C C C T C	T C C C A A C C T
XOEFB35TF				TGAAGCCCTC	
1					<u>.</u>

Extension Procedure:

- If necessary, extended selected read by aligning trimmed bases to existing consensus.
- Untrim to desired base, promote untrimmed bases to consenus, shift offsets.

Contig Joining



"Zip" together contigs by pairwise alignment between consensi.

Contig Fattening

"Fatten" addition reads in the join region to increase coverage.

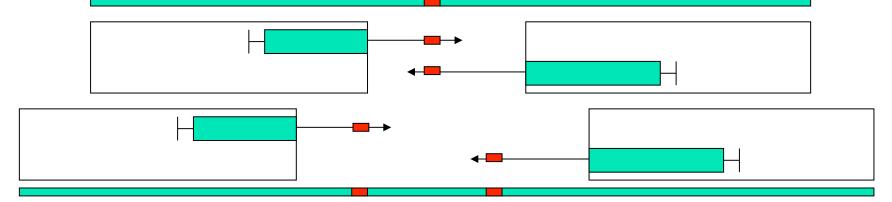
Join Report

blasted.joinreport (/local/asmgc/Blasted/autojoin/results) - 0	SVIM	Ber		_		×
Eile Edit Tools Syntax Buffers Window Help						
	3	5		0 0	Ø	
[autoJoin]						-
NunSequenceGaps=39 NunJoined=6						
NumDoubleExtend=0						
NunSingleExtend=5						
NunNoExtend=1						
PercJoine0.154						
ExpectedGap.Range=+20.000.15.034						
ExpectedGap.Mean=-4.39						
ExpectedGap.SD=14.25						
ExpectedGap.Median#-3.95						
ExpectedGap,Mad=19,67						
ActualGap.Ranger:82,67						
ActualGap, Hean=19,83						
ActualGap.SD=54.92						
ActualGap.Median=42.75 ActualGap.Mad=23.72						
Accusiosp.Nad-23.72						
-						
_						
"blasted.joinreport" 18L, 338C						
		- 1	.1		A11	b i

What did AutoJoiner do?

AutoJoiner Validation

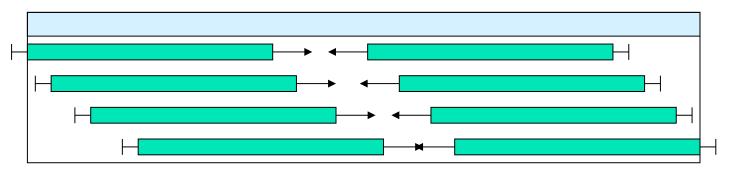
Project	Gaps	Joined	56	Invalid	Degenerate	Gap Size	Mean	Join ID	Mean
bim	106	14	13.20%	0	0	-200.5:155	21.18	98.39:100.00	99.26
dmg	52	13	25.00%	0	3	-666.5:36.5	-140.73	98.99.100.00	99.64
gb6	32	10	31,20%	0	0	-13:146	42.3	98.50:99.87	99.31
gba	110	38	34.50%	0	0	-452:229	29.18	97.18:100.00	99.36
gbm	43	6	14.00%	0	0	-17:22	-4.67	99.24:100.00	99.76
gbr	32	11	34.40%	0	0	-62.5:103.5	15.36	98.89:99.92	99.44
gbs	31	5	16.10%	0	0	-5:32.5	10.9	98.99:99.65	99.33
gcb	10	2	20.00%	0	0	-37.5:-4.5	-21	99.38:99.81	99.59
gej	22	11	50.00%	0	0	-53:139	27,45	98.71:99.81	99.45
góp	25	8	32.00%	0	4	-555:184.5	-75.31	99.03.99.85	99.42
gde	82	17	20.70%	0	1.	-113:203.5	22.29	97.04:99.93	99.14
ges	27	17	63.00%	0	0	-779:-302	-586.71	100.00.100.00	100
gfs	131	33	25.20%	0	6	-182.5:212	21.79	98.81:100.00	99.51
gmcap	10	2	20.00%	0	0	-11.5:171	79.75	98.67:99.84	99.25
gpi	150	52	34.70%	0	0	-231.5:181	20.3	97.96:99.93	99.4
gps	162	43	26.50%	0	0	-1069.5:213.5	-36.13	98.76:100.00	99.51
qsa	262	32	12.20%	0	0	-618:136	-43.44	94.90:100.00	99.25
crypt_1	20	8	40.00%	0	0	-36:186.5	63.62	98,74.99.88	99.43
crypt 2	.7	5	71.40%	1	0	-39:148	27.8	98.63.99.56	99.18
crypt_3	21	8	38.10%	0	0	-93:67.5	-3.06	97.83:100.00	99.31
crypt 4	25	7	28.00%	0	0	-90:159	45.21	98.94:100.00	99.52
crypt_5	23	8	34.80%	0	0	-111.5:249	35.12	98.98.99.92	99.43
crypt 6	14	7	50.00%	0	0	-14:192	37.21	98.41.99.93	99.58
crypt_7	17	6	35.30%	0	0	-3.5:230.5	66.67	99.09.100.00	99.62
crypt 8	15	6	40.00%	0	0	-19:57.5	15	99.20:100.00	99.74
crypt_9	12	6	50.00%	0	0	-423:34	-120.5	99.16:100.00	99.82
crypt_10	14	7	50.00%	1	0	-777:124	-9121	95.23:100.00	99.04
crypt_11	12	2	16.70%	0	0	-6:69.5	31.75	99.63.99.69	99.66
crypt_12	10	4	40.00%	0	0	-340:77.5	-69.88	99.77:100.00	99.86
crypt_13	13	7	53.80%	1	0	-213.5:144	19.07	99.38:100.00	99.7
composite	1490	395	26.51%	3	14	-1069.5:249	-25.89	94.90.100.00	99.45


25%+ of all sequencing gaps closed with 3 mistakes.

Complicating Issues

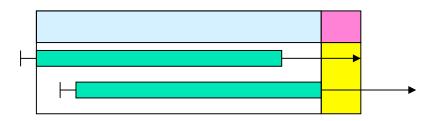
- Poly-monomer tails
 - Use dust to filter low complexity sequence

- Undetected repeats
 - Require strict agreement with scaffold



- Chimeric reads / Hard Stops
 - Good: Require high alignment similarity.
 - Better: Recognize hard stops by coverage gradients, other clues.
 - Best: Recognize unreliable sequence at chromatogram level.

Pre-Production Techniques


Contig Fattening

• TVG coverage increased from 5.83X to 6.10X (mean extension: 80.5bp)

Contig Growing

Extended 6144 edges in TVG (mean extension: 59.0bp)

Measuring Assembly Quality

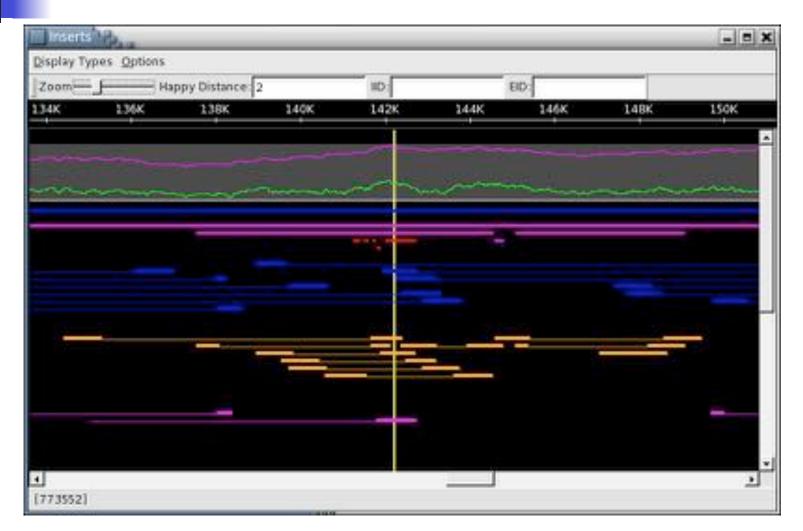
 Gross Status scaffold & contig sizes 	QC file
 Connectedness Status 	Cloe, AssemblyViewer,
read & clone coverage	getCoverage, cvgChop, asmQC
Insert Status	
mate happiness, Q	C file, Assembly Viewer, asmQC
library randomness	
Consensus Status	Cloe, getCoverage, getqc
Quality Class	
Consensus Quality Value	e
Read Status	
Correlated SNPs	findTcovSnps

Finding Suspicious Regions

% **ls**

blasted.frg blasted.asm

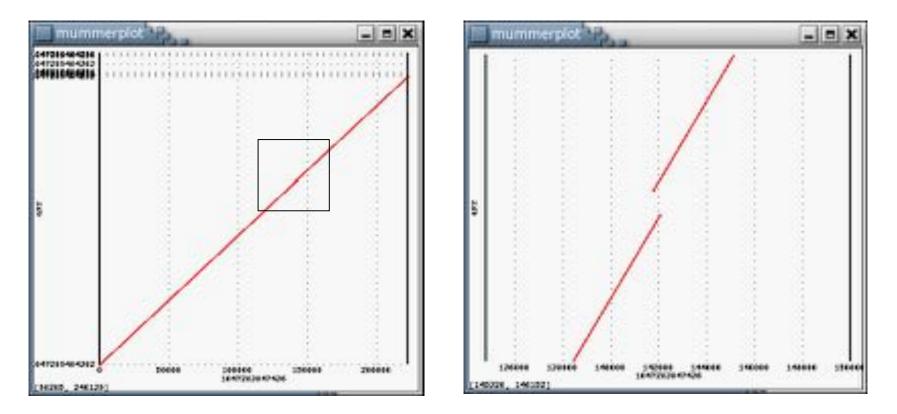
% /local/asmg/Linux/bin/cavalidate blasted

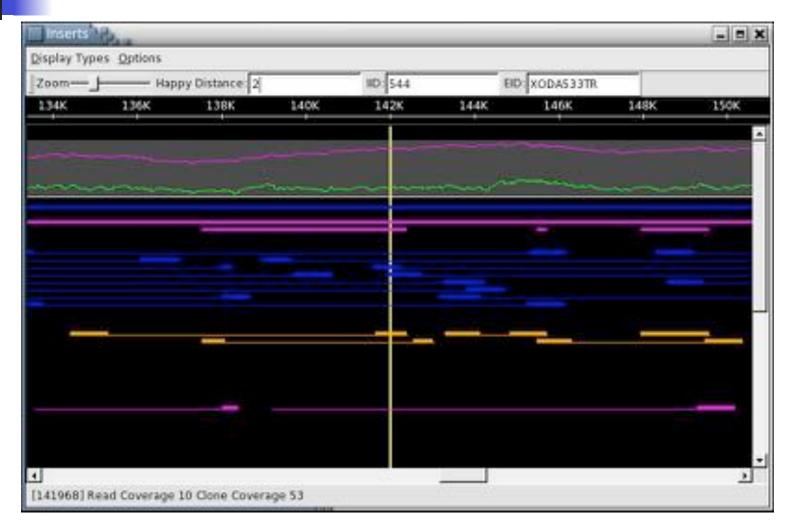

- Doing step 10: toAmos
- Doing step 20: bank-transact
- Doing step 30: asmQC
- Doing step 40: bank2contig
- Doing step 50: getCoverage
- Doing step 60: findTcovSnps
- Doing step 70: ClusterSnps
- Doing step 80: Load SNP Features
- Doing step 90: Find Surrogates
- Doing step 100: Load Surrogates
- Doing step 1000: Dump Features
- Doing step 1010: Get Suspicious Features
- Doing step 1020: Create Suspicious Regions
- % sort -nrk 6 blasted.snp.feat | head
- 1047283847436 P HIGH_SNP 141991 142712 46 15.67

Overcollapsed Repeat?

Assembly In	westig	jator	28	-			_	_									_			_	_	_						_		_	_	_				-	٦
ile Options				-			-				_										_							-									
Position 14207	7	<u>څ</u> •		1	ont	ig li	911	1		Chr	omi	o D	8	(oc	2					Ins	erts	s Co	inti	g Gr	aph	A	A	1	ind							•	•
		141	-				27		14.1	-						,	4.5-20	6						1403	30					1	4010	i) –					
Consensus	т	sa	T G	6 (c c	A	тс	G	c c	A	6 0		A	T		A C	6	6 (c. 6	G	c /	4 A	6	C A	•	i c	G	ст	6	G A	G	A C	•	6.1	G	c /	A 0
XOEE429TF	11	3 G 1	r e	0 0	C (C	A	T (C	Ģ	ċ e	A	01	A	A	T	A I	A, C	Ģ	61	0	nG.	e,	ą A	0	¢ A	0	T C	a								-		
COEGI79TR	* 11	3 6 1	T G	6.0	16	4	T C	6	6.6	٨	6.6	A	A	τ	A I	A ¢	6	6 1	6.0	6	с.	A 4	6	C A	6.	a c	G	сT	-15	G #	6	ΛĒ	E.	G 7	G	C i	A. (
KOEDS21TF	* 7.0	3 0.1	t G	0.0	5-E	A.	тс	•	C (A	G (i A	A	T.	Α.	A C	6	0.1	6.0	0	с,	A A	G	C A	0.0	9 C	0	сT	6	G #	0	A C	6	G 7	D I	с.	A. (
COEE929TR	• T (9.01	r 6	G (5 C	A	T C		C C			E A	e de	Τ.	A .	AIC	6	6 1	F 0		6 /	A 4	6	C A	G (5.0	G.	¢т	6	G. 4	6	A 6	. G.	G 7	Ð	C.,	A. 1
OCAQ79TR	8.70	9.01	r G	6.0	c c	A	ΤĢ	6	c e	A	0 (. A	A	Ŧ	A	A C	6	6 (6.0	6	с,	A A	0	C A		3.0	G	¢Τ	6	6 A	6	A C		0.7	r G	¢,	A (
ODA073TF	* 1 (5 6 1	F 6	6.0	εE	A.	T S	-	6 6		6 (i A	A	τ	A I	A C	6	6 1	6 0	-6	6.	A 4	6	C A	0.	6 6	-G-	ст	6	G #	6	A C	6	G17	G	C 1	a, (
OCA442TR	* 10	5 G. 1	t G	0.0	c e	A.	тε	0	e 6	. A	G (. A	A	τ	A I	A C	0	6.	c o	a	с,	A A	G	C A	0.0	g c	0	с т	6	G #		A C	0	G 7	r a	с.	A. (
06854776	* 11	4 G 1	r e	.0 (3.2	4	T C	6	C (A	61	E A	A	T	A	A C	6	6 1	66	6	6)	A A	6	C A	G (5 0	G	сT	6	6.4	6	A C	Q.	G 1	n G	¢.,	A 1
OEG358TF	8.7.1	5 G 1	r G	6.6	c e	A	T G	6	6.6	A	0.0	A	A	τ	A	A C	6	6 1	6.6	. 6	с.)	8 A	0	C A	6.	6 C	G.	ÇΤ	6	6 A	6	A C	6	0.7	r G	¢)	A (
OCAWSETE	*11	3 6 1	T B	6 (5.6	4	T C	6	C (۸	6 (i A	A	T	A I	A.C	6	6 1	E O	-6	C)	A 4	G	C A	6.	6 C	G	ст	46	G /	6	A C	E.	G 7	G	C i	A (
KOEDG13TR	* 19	3 0 1	t G	0 0	5 -C	A	T C	•	c c	A	G	C A	A	τ	A I	A C	6	Q (6.0	G.	с,	A A	G	C A	0.	G C	0	с т	6	G #	0	A È	6	6.7	D 1	C.	A. (
OEBD56TF	• 1	6 6 1	T G	G	c c	A	тс	G	c c	A	G	c c	A	T	G (G C	G	6 1	C G	G	C,	A A	111														
OEETSOTR	• 7	61	r G	60	C C	A	тс	G	c c	A	6.0	c c	A	T	G	G C	G	6 (C 6	6	C /	A A	Ģ	C A	2	5 0	G	СТ	6	G A	G	A					
OEEF32TF	•1	6 6 1	T G	G	C C	A	тс	G	C C	A	G	c c	A	T	G (G C	G	6 1	C G	G	c,	A A	G	C A	G	6 0	G	с т	G	G A	G	AC	G	61	G	C.	Α.
CODAE61 TF	• 1	6.1	T G	GC	C C	A	TC	G	c c	A	6 6	0 0	A	T	G	B C	G	6 1	c G	G	¢,	A A	G	C A	6	G C	G	СТ	6	G A	G	A C	6	G 1	r G	¢,	A
ODAZ68TR	• 1	6 6 1	T G	G	c c	A	TC	G	C C	A :	G	0	A	Т	G	G C	G	6 (C G	G	c,	A A	G	C A	G	6 0	G	C T	6	G A	G	A C	G	G T	G	C /	Α.,
ODAZ91TF	•7	61	T G	60	C C	A	тс	G	C C	A	Ģ (C C	A	T	G	G C	G	6 (c G	G	C /	A A	Ģ	C A	6	5 0	G	CT	G	G A	G	A C	6	G T	G	¢,	A
OECD04TR	• 1	6 6 1	T G	G	C C	A	тс	G	c c	A	G	C C	A	T	G	G C	G	6 0	C G	G	C /	A A	G	C A	G	s c	G	с т	6	G A	G	AC	G	G T	G	C.	Α,
OE8475TR	• 1	6.1	T G	GO	c c	A	тс	G	c c	: A	6 6	0.0	A	Т	G	C C	G	6 (c G	G	¢,	A A	G	C A	6	G C	G	СТ	6	G A	G	A C	6	G T	r G	¢,	A
KODAJ66TF	• 1	6 6 1	T G	G	c c	A	тс	G	c c	Α.	G	c c	A	Т	6	G C	G	6 (C G	G	C,	A A	G	C A	G	G C	G	СТ	6	G A	G	A C	G	G 1	G	C /	A /
KODB891TF	• 1	61	T G	GO	c c	A	TC	G	C C	A	G	C C	A	T	G	G C	G	6 (C G	6	C /	A A	Ģ	C A	6	5 0	G	СТ	6	G A	G	A C	6	G T	G	C.	A
	-				-	-			-	-	-	-	-	-			-	-	-		-		1			-						-				-	-
																						-	1														

For a bacterial sample, correlated discrepancies strongly suggest a repeat has been collapsed.


Mate View


The shrunken mates (orange) suggest the assembly has a deletion from the true sequence.

Local Assembly

- % run_CA -local -noedit -noupload local.frg -dir ca-0.003 -e 0.003
- % nucmer 1047283847436.fasta ca-0.003/local.fasta
- % /local/asmg/Linux/bin/mummerplot out.delta -R 1047283847436.fasta -Q ca-0.003/ local.fasta -layout -filter

Resolved Repeat

Unfortunately, size violated mates are only a clue. Ask Mihai for current research techniques.

Final Results

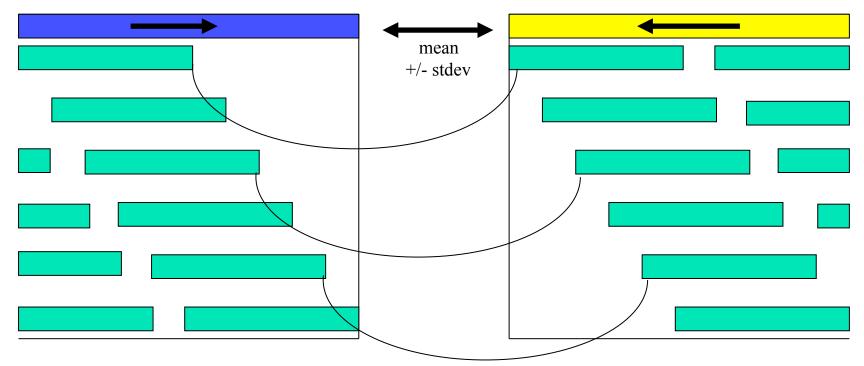
	Original Assembly	Reassembled
TotalScaffolds	21	5
TotalSpanOfScaffolds	4770228	4819528
IntraScaffoldGaps	51	33
MeanSequenceGapSize	410.18	96.94
[Top5Scaffolds]		
1	25:2156009:2164583:357.25	34:4810208:4813407:96.94
2	13:826284:830667:365.25	1:2558:2558:0.00
3	3:437076:439209:1066.50	1:1473:1473:0.00
4	3:333768:334012:122.00	1:1056:1056:0.00
5	5:310971:311756:196.25	1:1034:1034:0.00
TotalContigsInScaffolds	72	38
N50ContigBases	151430	253084
TotalDegenContigs	125	1
DegenContigLength	129182	959
MeanDegenContigSize	1033.46	959
[Top5Contigs]		
1	5939:536280	6291:516881
2	2751:259499	6203:436501
3	3005:238048	3805:385244
4	2199:220720	4292:364829
5	2509:196450	4025:355502

Expected Genome Size: 4.85Mb - 5.04Mb

Research Directions

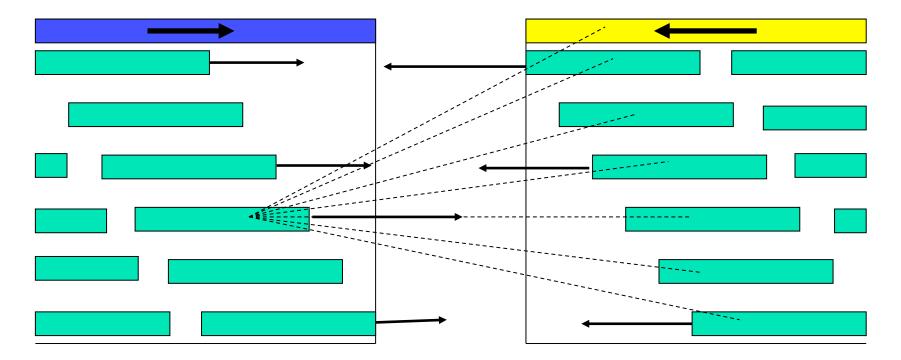
- AutoEditor 2.0: Better results, better engineering
- Context Based trimming
 - Partial Overlaps
 - Reference sequence
- Advanced CA Techniques
 - Contained Stones bug fixes
 - Blasting Degenerate and Surrogate Unitigs
 - Assembling in the gap
- Arachne & Other Assemblers
- Assembler Reconciliation
- AMOS Framework
- Assembly Forensics
- Assembly Visualization / Navigation

Conclusions

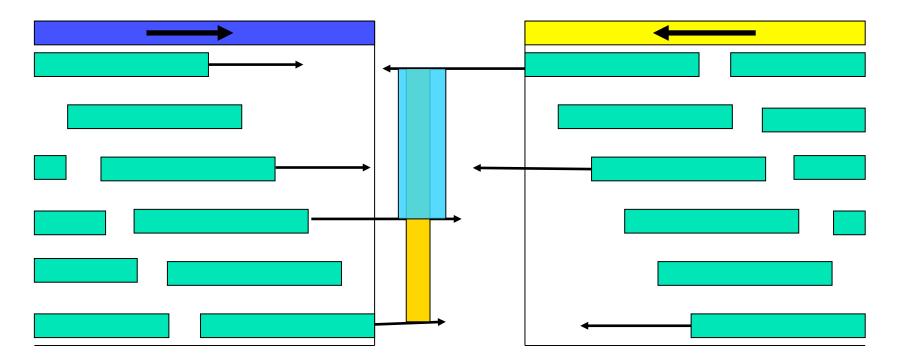

- Overriding strategy: Start conservatively, and iteratively build as more information becomes available.
- 95.5% 99.2% of genome in a single scaffold not typical yet, but it could be.
 - Be aware of potential size/quality tradeoffs, though.
- Assembly is complicated by genome structure, repeat characteristics, data quality, data management- one size does not fit all, ask for help.
 - Use Data Support!

Acknowledgements

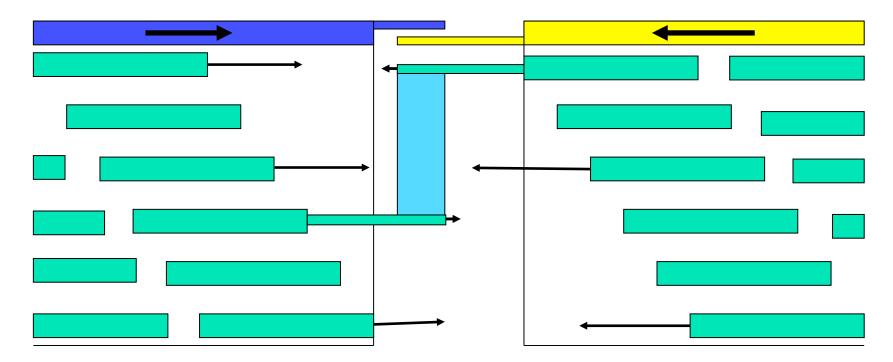
- Steven Salzberg
- Martin Shumway
- Jason Miller
- Pawel Gajer
- Art Delcher
- Mihai Pop
- Adam Phillippy


- WGA
- SE
- Data Support
- Jane Carlton
- Vish Nene

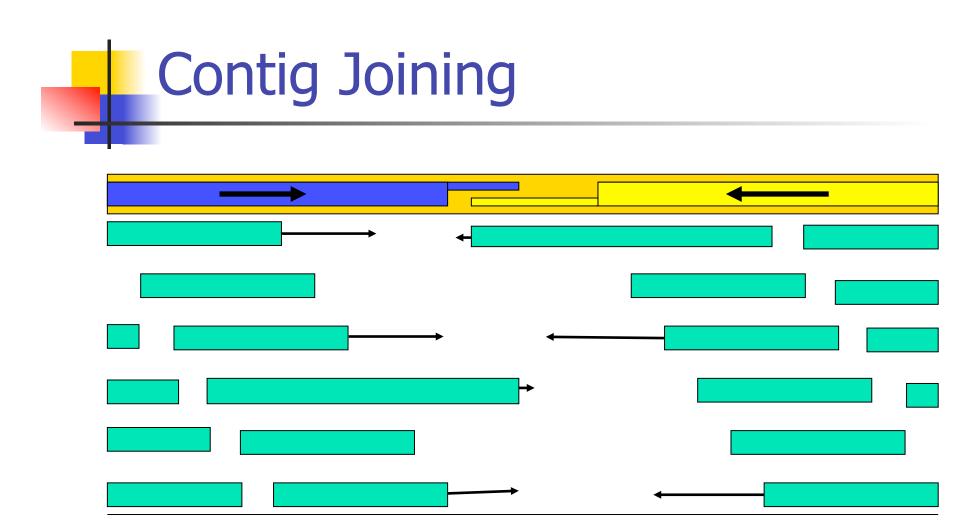
Sequencing Gap


The individual reads (green) have been assembled into 2 contigs (blue & yellow). The mate relationship between the reads allows for the contigs to be oriented and the gap size to be estimated.

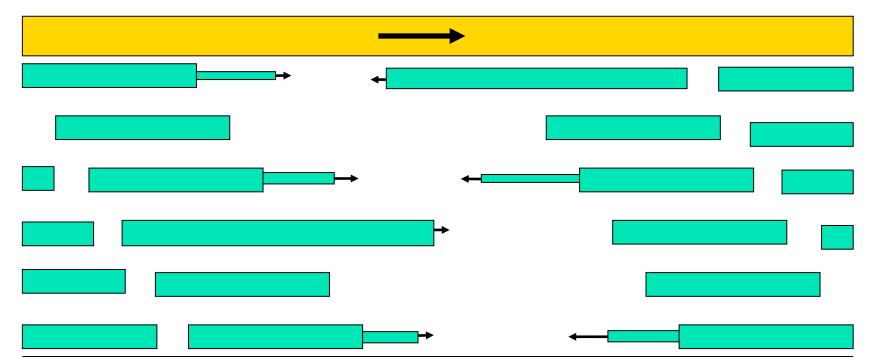
All-vs-all Alignment


1. An all-vs-all pairwise alignment between the full range sequences from the flanking contigs is computed.

Alignment Analysis



2. The alignments are tested for consistency with the scaffold and for being of sufficient quality. If any alignments satisfy the requirements, the best alignment (blue) is selected for joining the contigs.



3. The contigs are extended by extending the selected reads beyond their original clear range to the desired position. If necessary, the reads are first aligned to the existing consensus.

4. The contigs are joined by aligning the newly extended consensi. Alignment gaps inserted into the conseni are promoted into the appropriate positions in the underlying multiple alignment. The joined contig (orange) replaces the original two in the scaffold.

5. The join region is fattened to increase the depth of coverage and enhance the consensus quality.