
CS 600.226: Data Structures
Michael Schatz

Dec 7, 2016
Lecture 39: Advanced Compiler Optimizations ;-)

Part 1: Minimum Spanning Trees

Long Distance Calling

Supposes it costs different amounts of money to send data between cities A
through F. Find the least expensive set of connections so that anyone can

send data to anyone else.

Given an undirected graph with weights on the edges, find the subset of edges
that (a) connects all of the vertices of the graph and (b) has minimum total costs

This subset of edges is called the minimum spanning tree (MST)

Removing an edge from MST disconnects the graph, adding one forms a cycle

Dijkstra’s != MST

S

Y

X

Dijkstra’s will build the tree S->X, S->Y
(tree visits every node with shortest paths from S to every other node)

but the MST is S->X, X->Y
(tree visits every node and minimizes the sum of the edges)

100

100

1

Prim’s Algorithm

Prim’s Algorithm Sketch
1. Initialize a tree with a single vertex, chosen arbitrarily from the graph.
2. Grow the tree by one edge: of the edges that connect the tree to

vertices not yet in the tree, find the minimum-weight edge, and add it to
the tree.

3. Repeat step 2 (until all vertices are in the tree).

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a

separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning

1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the

forest F, combining two trees into a single tree

C E

D

FA

B

12

4

7

4

9

14

10

3
2

8

2

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a

separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning

1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the

forest F, combining two trees into a single tree

C E

D

FA

B

12

4

7

4

9

14

10

3
8

Tinting
is just to
make it
easier to
look at

3
2

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a

separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning

1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the

forest F, combining two trees into a single tree

C E

D

FA

B

12

4

7

4

9

14

10

8

4

3
2

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a

separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning

1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the

forest F, combining two trees into a single tree

C E

D

FA

B

12

4

7

9

14

10

8

4

4

3
2

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a

separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning

1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the

forest F, combining two trees into a single tree

C E

D

FA

B

12

7

9

14

10

8

7

4

4

3
2

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a

separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning

1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the

forest F, combining two trees into a single tree

C E

D

FA

B

12 9

14

10

8

8
7

4

4

3
2

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a

separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning

1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the

forest F, combining two trees into a single tree

C E

D

FA

B

12 9

14

10

12 9

14

10

8
7

4

4

3
2

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a

separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning

1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the

forest F, combining two trees into a single tree

C E

D

FA

B

7

4

4

3
2

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a

separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning

1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the

forest F, combining two trees into a single tree

C E

D

FA

B

7

4

4

3
2

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a

separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning

1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the

forest F, combining two trees into a single tree

C E

D

FA

B

Easy: O(|V|)

Easy: O(|E|lg|E|)

Hmm???

Running time:

Disjoint Sets

Disjoint Subset: every element is assigned to a single subset

Problem: Determine which elements are part of the same subset as
sets are dynamically joined together

Two main methods:
Find: Are elements x and y part of the same set?

Union: Merge together sets containing elements x and y

C E

D

FA

B

C E

D

FA

B

Quick Find

https://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf

Quick Union

Improved Quick-Union: Weighting

Improvement 2: Path Compression

Weighted Path Compression Analysis

Much bigger
than #atoms in
the universe

7

4

4

3
2

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a

separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning

1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the

forest F, combining two trees into a single tree

C E

D

FA

B

Easy: O(|V|)

Easy: O(|E|lg|E|)

Hmm???

Running time:

Using Weighted-Path Compression Quick Union
(aka Union-Find) each find or union in O(lg*|V|) time.
Total time is O(|E|lg|E| + Elg*|V|) => O(|E|lg|E|)

If the edges are already in sorted order (or use a
linear time sorting algorithm such as counting sort),
reduce total time to O(|E|lg*|V|)

Never underestimate the power of the LOG STAR!!!!

Part 2: Final Thoughts

Abstract Data Types

Software Engineering

CS 600.226

Algorithms Analysis

Architecture

Abstract Data Types

Software Engineering

CS 600.226

Algorithms Analysis

Architecture

Putting it all together

mean = 52.4 +/- 13.8 sum = 1974

Next Steps
Review Session: Tuesday Dec 11 @ 2pm in Malone G33/G35
Office Hours: Wednesday Dec 14 @ 3pm & by appointment

Final Exam: Thursday Dec 13 @ 9am Right here!

Resources

Midterm Review

*You are not responsible for knowing the k-d tree

Filling your toolbox

Abstract Data Types
Software Engineering

CS 604.226

Algorithms Analysis

Filling your toolbox

Abstract Data Types
Software Engineering

CS 604.226

Algorithms Analysis

Become a TA!

Do Research! Start a company!

Thank you!

Final Review
Trees
• Array vs Node Implementation
• In-, pre-, post- order
• Binary Search Trees
• AVL Trees
• Heaps & Priority Queues
• Treaps

Graphs
• Adj. List, Adj. Matrix, Edge List
• DFS & BFS
• Shortest Path: Dijkstra’s
• Topological Sorting
• MST: Prim’s & Kruskal’s

Sorting
• Binary Search
• HeapSort, MergeSort, QuickSort
• CountingSort
• O(n lg n) vs O(n) sorting

Sets & Maps
• Position-based vs Value-based
• Sparse Array
• Array Set vs List Set
• Self organizing
• Bit sets
• Bloom filter
• Union Find

Hash Tables
• Separate Chaining
• Linear/Quadratic/Double probing
• Cuckoo Hashing
• Hash Functions
• Hash Table Sizes

Strings
• Suffix Arrays
• BWT
• Run Length Encoding

Welcome to CS 600.226
https://github.com/schatzlab/datastructures2018

Good luck!

