CS 600.226: Data Structures
Michael Schatz

Dec 7,2016 @
Lecture 39: Advanced Compiler Optimizations ;-)

Part |: Minimum Spanning Trees

Long Distance Calling

Supposes it costs different amounts of money to send data between cities A
through F. Find the least expensive set of connections so that anyone can
send data to anyone else.

Given an undirected graph with weights on the edges, find the subset of edges
that (a) connects all of the vertices of the graph and (b) has minimum total costs

This subset of edges is called the minimum spanning tree (MST)

Removing an edge from MST disconnects the graph, adding one forms a cycle

Dijkstra’s '= MST

e ®

Prim’s Algorithm

Prim’s Algorithm Sketch
1. Initialize a tree with a single vertex, chosen arbitrarily from the graph.

2. Grow the tree by one edge: of the edges that connect the tree to
vertices not yet in the tree, find the minimum-weight edge, and add it to

the tree.
. Repeat step 2 (until all vertices are in the tree).

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a
separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning
1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the
forest F, combining two trees into a single tree

Kruskal’s Algorithm

Tinting
is just to
make it
easier to
look at

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a
separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning
1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the
forest F, combining two trees into a single tree

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a
separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning
1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the
forest F, combining two trees into a single tree

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a
separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning
1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the
forest F, combining two trees into a single tree

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a
separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning
1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the
forest F, combining two trees into a single tree

Kruskal’s Algorithm

10

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a
separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning
1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the
forest F, combining two trees into a single tree

Kruskal’s Algorithm

10

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a
separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning
1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the
forest F, combining two trees into a single tree

Kruskal’s Algorithm

@ @
- -
O @

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a
separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning
1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the
forest F, combining two trees into a single tree

Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a
separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning
1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the
forest F, combining two trees into a single tree

Kruskal’s Algorithm

Running time:
Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the grag Easy: O(|V|)
separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning
1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the
forest F, combining two trees into a single tree HMmm?27

Easy: O(|E|Ig|E]|)

Disjoint Sets
e’ ¢

Disjoint Subset: every element is assigned to a single subset

Problem: Determine which elements are part of the same subset as
sets are dynamically joined together

Two main methods:
Find: Are elements x and y part of the same set?

Union: Merge together sets containing elements x and y

Quick Find

Data structure.
e Integer array id[) of size w.
e Interpretation: p and qare connected if they have the same id.

5 and 6 are connected
2,3,4,and 9 are connected

'S
oo
e
oN
o w
0
o
[
~N S
@
w Y

Find. Check if p and q have the same id.

id[3]=9; id[6]=6
3 and 6 not connected
Union. To merge components containing p and q,
change all entries with id[p)] to id[q].
i 1 o SRl 9 5.8 8 union of 3 and 6
id[i] 0 1 &6 BB B 2N 2,3,4,5,6,and 9 are connected

3
6
problem: many values can change

https://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf

Quick Union

Data structure.
* Integer array id[) of size w.

. Inferprefaﬂon: id[i] IS pqr'en‘l' of i. / keep going until it doesn't change
e Root of i is id[id[id[...id[i]...]]].

"
oo
N
oN
- W
0
o n
Lo 0)
R |
@® ™
w v

2 @

ONONO i@

3
Find. Check if p and q have the same root.

3'srootis 9;5'srootis b

Union. Set the id of q's root to the id of p's root.

L O 29 5
id[fij o 1 9 4 6

e ®© ® @ ® ®
@ ©® ®

4
9

I

only one value changes

Improved Quick-Union:Weighting

Weighted quick-union.

e Modify quick-union to avoid tall trees.

* Keep track of size of each component.
 Balance by linking small tree below large one.

quick-union @ 0
smaller
o (= ®

smaller larger
‘rC‘t tr‘-c

. might put the

larger larger tree lower

iree

always chooses the
?Zr ;Ircman'w
@ ®)

larger smaller smaller larger

weighted

Weighted quick-union

Improvement 2: Path Compression

Path compression. Just after computing the root of i,
set the id of each examined node 10 root (i).

root(9)

Weighted Path Compression Analysis

Theorem. Starting from an empty data structure, any sequence

of M union and find operations on N objects takes O(N + M Ig* N) time.

* Proof is very difficult. [

* But the a|g°rithm is still SEmpk! number of times needed to take

the Ig of a number until reaching 1

Linear algorithm?
* Cost within constant factor of reading in the data.
* In theory, WQUPC is not quite linear.]

0

* Inpractice, WQUPC is linear. (1,2] 1
(2, 4] 2

3

4

X g x

because Ig* N is a constant (4, 16]
in this universe (16, 65536)
(65536, 2595%] 5
Amazing fact: T
Much bigger

e In theory, no linear linking strategy exists _
than #atoms in

the universe

Kruskal’s Algorithm

in the graph is a

s then add it to the

Never underestimate the power of the LOG STAR!!!!

Part 2: Final Thoughts

vate static class Node<k,

Node<K, V> left, right;

K key;

V value ;

Node(K k, V v){
thil.koy = k;
this.value =v;

Abstract Data Types

vate static class Node<k,
Node<K, V> left, right;
K key;
V value ;
Node(K k, V v){
this.key = k;
this.value =v;

Architecture

Software Engineering

CS 600.226

85 O Compaety Ohe
e ——
»
' -
e

Algorithms Analysis
\-.g__-] \

Putting it all together

Slides per Lecture

»
.-
-
1 2) ‘ s . ’ ' ’ 1 1 3 8 14 13 " 7 8 2 n)) » M n mn bR} » 1 L} 3] 1 i » " L B " "

mean = 52.4 +/- 13.8 sum = 1974

Next Steps

Review Session: Tuesday Dec || @ 2pm in Malone G33/G35
Office Hours: Wednesday Dec 14 @ 3pm & by appointment

Final Exam: Thursday Dec 13 @ 9am Right here!

Resources

O8O O v b
* O O & ORas v IR M A St - “« s @) -2 s D* O
LE BEERE 1 B EEXE B LCE FE EERELTLE Bt o Do D) el v B O b

Schedule

. Dae Lecture Reacdinga & Resources Assgrment
1 ™ax Production Sor Up tor Parss
2 Fr 8 rieriaces Jeve voerteces Set o VlaBos

o 903 Lt Dary - No Clss

L) Weo &5 Avays. Gerencs, 0 Eweptons 2o Garenos

4 a7 Lists Jove Reteronces W Y Assgrea

S Mon 910 Rorgtors Nested Qasses & Rerancr mtertace

e Yol 002 Corplexty Araltysis Big O Cheut Sheet

? noanse Vore Complonty W 2 Assgred

il Bl ol ey et e Algorithms and Data Structures
* Wed 019 Sucks Lecture Notes for 601.226

10 a2t Snachs and JUm Ao & WY Astagred

n Non SV Ssacks, Queves, g Degues

2 Wea 9726 Lists

> | =028 Viooe Lints WS Asugred

14 Men 0N Teor

15 Wad 03 Twot and Graphs

18 Fri 0yS Craph Seercr

7 Mon 08 VaRerm Rerview 1

L] Wed 10/ Ve Roven 7

" =02 Macterre/

20 Non 108 Sem et

n Wed W17 MVicterm Discusson WS Assigred
N0 F ol Broek

n Mon 10/22 Ordered Sets

23 Wed 1024 Priorty Queues and Heags

p Fol 0 Sty of Foegeiy Dlsety HANE Asgrea

Midterm Review

*You are not responsible for knowing the k-d tree

3 ...
.\.- Y x hr'-l‘ 4.

SRR 9 £

=z !

A

es- - ‘
e
arch! W

Thank you!

Final Review

Trees

Array vs Node Implementation
In-, pre-, post- order

Binary Search Trees

AVL Trees

Heaps & Priority Queues
Treaps

Graphs

Adj. List, Adj. Matrix, Edge List
DFS & BFS

Shortest Path: Dijkstra’s
Topological Sorting

MST: Prim’s & Kruskal’s

Sorting

Binary Search

HeapSort, MergeSort, QuickSort
CountingSort

O(n Ig n) vs O(n) sorting

Sets & Maps

» Position-based vs Value-based
e Sparse Array

« Array Set vs List Set

« Self organizing

* Bit sets

* Bloom filter

 Union Find

Hash Tables

« Separate Chaining

« Linear/Quadratic/Double probing
« Cuckoo Hashing

* Hash Functions

« Hash Table Sizes

Strings
« Suffix Arrays
« BWT

 Run Length Encoding

Welcome to CS 600.226 ,
. https://github.com/schatzlab/datastructures2018 4

Good luck!

