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Lecture 38: Union-Find



Assignment 10:  The Streets of Baltimore
Out on: November 30, 2018
Due by: December 7, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The tenth assignment returns to our study of graphs, although this time
we are using a weighted graph rather than the unweighted movie/movie-
star graph. Specifically, you will be touring the streets of Baltimore to find
the shortest route from the JHU campus to other destinations around
Baltimore.

Remember: javac –Xlint:all & checkstyle *.java & Junit
(No JayBee)



Part 1: Minimum Spanning Trees



Long Distance Calling

Supposes it costs different amounts of money to send data between cities A 
through F. Find the least expensive set of connections so that anyone can 

send data to anyone else. 

Given an undirected graph with weights on the edges, find the subset of edges 
that (a) connects all of the vertices of the graph and (b) has minimum total costs

This subset of edges is called the minimum spanning tree (MST)

Removing an edge from MST disconnects the graph, adding one forms a cycle



Dijkstra’s != MST
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Dijkstra’s will build the tree S->X, S->Y 
(tree visits every node with shortest paths from S to every other node) 

but the MST is S->X, X->Y 
(tree visits every node and minimizes the sum of the edges)
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Prim’s Algorithm

1. Pick an arbitrary starting vertex and add it to 
set T. Add all of the other vertices to set R

Every vertex will be included eventually, so doesn’t 
matter where you start

T={A}   R={B,C,D,E,F}
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Prim’s Algorithm

3. Repeat!

A-B

A-C

C-D

C-F

C-E

By making a set of simple local choices, it finds the overall best solution
The greedy algorithm is optimal J



Prim’s Algorithm

Prim’s Algorithm Sketch
1. Initialize a tree with a single vertex, chosen arbitrarily from the graph.
2. Grow the tree by one edge: 

• Of the edges that connect the tree to vertices not yet in the tree, 
find the minimum-weight edge, and add it to the tree.

3. Repeat step 2 (until all vertices are in the tree).



Prim’s Algorithm

Prim’s Pseudo-code
1. For each vertex v, 

• Compute C[v] (the cheapest cost of a connection to v from the MST) 
and an edge E[v] (the edge providing that cheapest connection). 

• Initialize C[v] to ∞ and E[v] to null indicating that there is no edge 
connecting v to the MST

2. Initialize an empty forest F (set of trees) and a set Q of vertices that have 
not yet been included in F (initially, all vertices).

3. Repeat the following steps until Q is empty:
1. Find and remove a vertex v from Q with the minimum value of C[v]
2. Add v to F and, if E[v] is not null, also add E[v] to F
3. Loop over the edges vw connecting v to other vertices w. For each 

such edge, if w still belongs to Q and vw has smaller weight than C[w], 
perform the following steps:
1. Set C[w] to the cost of edge vw
2. Set E[w] to point to edge vw.

4. Return F

What data structures do we need to make it fast?

How fast is the naïve version? O(|V|2)

HEAP



Prim’s Algorithm

Faster Prim’s Pseudo-code
1. Add the cost of all of the edges to a heap
2. Repeatedly pick the next smallest edge (u,v)

• If u or v is not already in the MST, add the edge uv to the MST

How fast is this version O(|E| lg |E|)

How fast is this version O(|E| lg |V|)

Fastest Prim’s Pseudo-code
1. Add all of the vertices to a min-priority-queue prioritized by the min 

edge cost to be added to the MST. Initialize (key=v, dist=∞, edge=<>)
2. Repeatedly pick the next closest vertex v from the MPQ

1. Add v to the MST using the recorded edge
2. For each edge (v, u)

• If cost(v,u) < MPQ(u)
• MPQ.decreasePriority(u, cost(v,u), (v,u))

Using Fibonacci Heap O(|E| + |V| lg |V|)



Part 2: Kruskal’s Algorithm
and Union Find



Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a 

separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning

1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the 

forest F, combining two trees into a single tree
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Kruskal’s Algorithm
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Easy: O(|E|lg|E|)

Hmm???

Running time:



Disjoint Sets

Disjoint Subset: every element is assigned to a single subset

Problem: Determine which elements are part of the same subset as 
sets are dynamically joined together

Two main methods:
Find: Are elements x and y part of the same set?

Union: Merge together sets containing elements x and y
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Quick Find

https://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf



Implementation

Find is quick O(1), but each union is O(N) time
Kruskal’s ultimately merges all N items: O(N2)

Can we do any faster?



Implementation

Find is quick O(1), but each union is O(N) time
Kruskal’s ultimately merges all N items: O(N2)

Can we do any faster?



Quick Find Forest
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Quick Find Forest



Quick Find Forest



Quick Union



Quick Union

Why not just change id[q]? Why set it to p’s root instead of p?



Quick Union Implementation



Quick Union Example

What is the worst case for Quick Union?



Quick-Union Analysis



Improved Quick-Union: Weighting



Improved Quick-Union: Weighting



Weighted Quick-Union Implementation



Weighted Quick-Union



Weighted Quick-Union

How tall can the tree grow?

Height of tree only grows 
when two trees of equal 
height are united, thereby 
doubling the number of 
elements

Hooray! Tree stays pretty flat!

Uniting a short tree and a tall 
tree doesn’t increase the 
height of the tall tree

How many rounds of doubling 
can we do until we include all 
N elements?

lg N rounds 
=> O(lg N) max height J



Weighted Quick-Union Analysis

Usually very happy with lg(N), but here we can do better!

Should we stop trying here?



Improvement 2: Path Compression



Path Compression Implementation



Weighted Path Compression Example



Weighted Path Compression Analysis

Much bigger 
than #atoms in 
the universe
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Hmm???

Running time:

Using Weighted-Path Compression Quick Union 
(aka Union-Find) each find or union in O(lg*|V|) time. 
Total time is O(|E|lg|E| + Elg*|V|) => O(|E|lg|E|)

If the edges are already in sorted order (or use a 
linear time sorting algorithm such as counting sort), 
reduce total time to O(|E|lg*|V|) 



Other Applications: 
Connected Components



Other Applications: 
Connected Components

How would you use Union-Find to solve this?

Assign every dot to a set, then merge sets that have an edge between them



Other Applications:
Connected Components

63 
Connected 

Components



Never underestimate the power of the LOG STAR!!!!



Next Steps
1. Reflect on the magic and power of the logstar!

2. HW 10 due Friday @ 10pm


