
CS 600.226: Data Structures
Michael Schatz

Dec 3 2018
Lecture 37: Minimum Spanning Trees

Assignment 10: The Streets of Baltimore
Out on: November 30, 2018
Due by: December 7, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The tenth assignment returns to our study of graphs, although this time
we are using a weighted graph rather than the unweighted movie/movie-
star graph. Specifically, you will be touring the streets of Baltimore to find
the shortest route from the JHU campus to other destinations around
Baltimore.

Remember: javac –Xlint:all & checkstyle *.java & Junit
(No JayBee)

Assignment 10: The Streets of Baltimore
Out on: November 30, 2018
Due by: December 7, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The tenth assignment returns to our study of graphs, although this time
we are using a weighted graph rather than the unweighted movie/movie-
star graph. Specifically, you will be touring the streets of Baltimore to find
the shortest route from the JHU campus to other destinations around
Baltimore.

Remember: javac –Xlint:all & checkstyle *.java & Junit
(No JayBee)

We have decided to make the tenth assignment optional.

If you elect to do the assignment it can be used to *replace* the
grade from one of your earlier assignments, so that we will only

consider your 9 highest grades from all of the assignments. If you
submit this assignment but score worse than your previous nine

assignments, this assignment will be dropped.

If you elect to skip the assignment, there will be no penalty,
although we strongly encourage you to do so only if you have very
good grades for the other assignments. Also note that the concepts

and implementation issues that arise for this assignment are all valid
questions for the final exam.

Part 1: Dijkstra’s Algorithm
aka Shortest Path Revisited

Why doesn’t BFS work for maps?

500

200200200200200200

400

700

2000

200 200
500

400
600

1500

600
400

400

600

Why doesn’t BFS work for maps?

500

200200200200200200

400

700

2000

200 200
500

400
600

1500

600
400

400

600

0

500

2700
20040010002500

2500

2100

600

1200

Fewest hops != Shortest distance

2700

2700

1200

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

E

D

FA

B

C

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
∞

F
∞

A
0

B
∞

C
∞

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
∞

F
∞

A
0

B
∞

C
∞

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
8

F
10

A
0

B
4

C
17

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
8

F
10

A
0

B
4

C
17

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
8

F
10

A
0

B
4

C
17

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
17

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
17

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
17

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
17

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
17

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
16

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
16

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
16

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
16

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

No more unvisited nodes! Done

If we are looking for a path between a
particular pair, could we terminate early?

Yes! As soon as we are done with target
node, its distance will never change
again

14

9

23
17

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
16

D
8

F
10

A
0

B
4

C
15

11

4

10

1

8

No more unvisited nodes! Done

If we are looking for a path between a
particular pair, could we terminate early?

Yes! As soon as we are done with target
node, its distance will never change
again

We are building a tree
inside the graph of shortest

paths from start J

Dijkstra’s Correctness

• Assume that Dikjstra’s algorithm has correctly found the shortest path to the
first N items, including from S to X and U (but not yet Y or V)

• It now decides the next closest node to visit is v, using the edge from u
Could there be some other shorter path to v?

S

U

X

V

Y

No: cost(S->X->V) must be greater than or equal to cost(S->U->V) or it would
have already revised the cost of v to go through X

No: cost(S->X->Y) must be greater than or equal to cost(S->U->V) (and therefore
cost(S->X->Y->V) must be even greater) or it would be visiting node Y next

BFS
BFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.getBegin()
if (cur == stop)

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child)

Dijstra
Dijstra(start, stop)
// initialize all nodes dist = -1
start.dist = 0
PQ.add (start)
while (!Q.empty())

cur = PQ.getMin()
if (cur == stop)

print cur.dist;
else if cur.visited

// already visited, nothing to do
else

cur.visted = true
foreach e in cur.children

d = cur.dist + e.weight
if (d < e.child.dist)

e.child.dist = d
PQ.add (e.child, e.child.dist)

Dijkstra with Priority Queue

Part 2: Minimum Spanning Trees

Long Distance Calling

Supposes it costs different amounts of money to send data between cities A
through F. Find the least expensive set of connections so that anyone can

send data to anyone else.

Given an undirected graph with weights on the edges, find the subset of edges
that (a) connects all of the vertices of the graph and (b) has minimum total costs

This subset of edges is called the minimum spanning tree (MST)

Removing an edge from MST disconnects the graph, adding one forms a cycle

Dijkstra’s != MST

S

Y

X

Dijkstra’s will build the tree S->X, S->Y
(tree visits every node with shortest paths from S to every other node)

but the MST is S->X, X->Y
(tree visits every node and minimizes the sum of the edges)

100

100

1

Any ideas?

Prim’s Algorithm

1. Pick an arbitrary starting vertex and add it to
set F. Add all of the other vertices to set Q

Every vertex will be included eventually, so doesn’t
matter where you start

F={A} Q={B,C,D,E,F}

Prim’s Algorithm

1. Pick an arbitrary starting vertex and add it to
set F. Add all of the other vertices to set Q

Every vertex will be included eventually, so doesn’t
matter where you start

F={A} Q={B,C,D,E,F}

2. While Q is not empty, pick an edge from F to
Q with minimum cost

A-B: 4 <- pick me
A-C: 7
A-D: 8
A-F: 10

Prim’s Algorithm

1. Pick an arbitrary starting vertex and add it to
set F. Add all of the other vertices to set Q

Every vertex will be included eventually, so doesn’t
matter where you start

F={A} Q={B,C,D,E,F}

2. While Q is not empty, pick an edge from F to
Q with minimum cost

A-B: 4 <- pick me
A-C: 7
A-D: 8
A-F: 10

Prim’s Algorithm

3. Repeat!

A-B

Prim’s Algorithm

3. Repeat!

A-B

A-C

Prim’s Algorithm

3. Repeat!

A-B

A-C

C-D

Prim’s Algorithm

3. Repeat!

A-B

A-C

C-D

C-F

Prim’s Algorithm

3. Repeat!

A-B

A-C

C-D

C-F

C-E

By making a set of simple local choices, it finds the overall best solution
The greedy algorithm is optimal J

Prim’s Algorithm

Prim’s Algorithm Sketch
1. Initialize a tree with a single vertex, chosen arbitrarily from the graph.
2. Grow the tree by one edge:

• Of the edges that connect the tree to vertices not yet in the tree,
find the minimum-weight edge, and add it to the tree.

3. Repeat step 2 (until all vertices are in the tree).

Prim’s Algorithm

Prim’s Pseudo-code
1. For each vertex v,

• Compute C[v] (the cheapest cost of a connection to v from the MST)
and an edge E[v] (the edge providing that cheapest connection).

• Initialize C[v] to ∞ and E[v] to null indicating that there is no edge
connecting v to the MST

2. Initialize an empty forest F (set of trees) and a set Q of vertices that have
not yet been included in F (initially, all vertices).

3. Repeat the following steps until Q is empty:
1. Find and remove a vertex v from Q with the minimum value of C[v]
2. Add v to F and, if E[v] is not null, also add E[v] to F
3. Loop over the edges vw connecting v to other vertices w. For each

such edge, if w still belongs to Q and vw has smaller weight than
C[w], perform the following steps:
1. Set C[w] to the cost of edge vw
2. Set E[w] to point to edge vw.

4. Return F

What data structures do we need to make it fast?

How fast is the naïve version? O(|V|2)

HEAP

Prim’s Algorithm

Faster Prim’s Pseudo-code
1. Add the cost of all of the edges to a heap
2. Repeatedly pick the next smallest edge (u,v)

• If u or v is not already in the MST, add the edge uv to the MST

How fast is this version O(|E| lg |E|)

How fast is this version O(|E| lg |V|)

Fastest Prim’s Pseudo-code
1. Add all of the vertices to a min-priority-queue prioritized by the min

edge cost to be added to the MST. Initialize (key=v, dist=∞, edge=<>)
2. Repeatedly pick the next closest vertex v from the MPQ

1. Add v to the MST using the recorded edge
2. For each edge (v, u)

• If cost(v,u) < MPQ(u)
• MPQ.decreasePriority(u, cost(v,u), (v,u))

Using Fibonacci Heap O(|E| + |V| lg |V|)

Teaser: Kruskal’s Algorithm

Kruskal’s Algorithm Sketch
1. Create a forest F (a set of trees), where each vertex in the graph is a

separate tree
2. Create a set S containing all the edges in the graph
3. while S is nonempty and F is not yet spanning

1. remove an edge with minimum weight from S
2. if the removed edge connects two different trees then add it to the

forest F, combining two trees into a single tree
Union-Find

Part 3: Graph Complexity

Traveling Salesman Problem

• What if we wanted to compute the minimum
weight path visiting every node once?

C

A

D

B
4

1
3

1

5

2

ABDCA: 4+2+5+3 = 14
ACDBA: 3+5+2+4 = 14*
ABCDA: 4+1+5+1 = 11
ADCBA: 1+5+1+4 = 11*
ACBDA: 3+1+2+1 = 7
ADBCA: 1+2+1+3= 7 *

Greedy Search

C

A

D

B
8

11

5

12

50

10

Greedy Search
Greedy Search
cur=graph.randNode()
while (!done)

next=cur.getNextClosest()

Greedy: ABDCA = 5+8+10+50= 73
Optimal: ACBDA = 5+11+10+12 = 38

Greedy finds the global optimum only when
1. Greedy Choice: Local is correct without reconsideration
2. Optimal Substructure: Problem can be split into subproblems

Optimal Greedy: Dijkstra’s, Prim’s, Cookie Monster

C

A

D

B
8

11

5

12

50

10

TSP Complexity

• No fast solution
– Knowing optimal tour through n cities doesn't

seem to help much for n+1 cities

[How many possible tours for n cities?]

• Extensive searching is the only
provably correct algorithm
– Brute Force: O(n!)

• ~20 cities max
• 20! = 2.4 x 1018

C

A

D

B
4

1
3

1

5

2

C

A

D

B
4

1

3

1

5

2

E 302

1 2

Branch-and-Bound
• Abort on suboptimal solutions

as soon as possible
– ADBECA = 1+2+2+2+3 = 10
– ABDE = 4+2+30 > 10
– ADE = 1+30 > 10
– AED = 1+30 > 10
– …

C

A

D

B
4

1

3

1

5

2

E 302

1 2

• Performance Heuristic
– Always gives the optimal answer
– Doesn't always help performance, but often does
– Current TSP record holder:

• 85,900 cities
• 85900! = 10386526

[When not?]

TSP and NP-complete
• TSP is one of many extremely hard

problems of the class NP-complete
– Extensive searching is the only way to

find an exact solution
– Often have to settle for approx. solution

• WARNING: Many “natural” problems are in this class
– Find a tour the visits every node once (TSP)
– Find the smallest set of vertices covering the edges (vertex cover)
– Find the largest clique in the graph (max clique)
– Deciding if two graphs have the same structure (graph homomorphism)
– Find the best set of moves in tetris or battleship
– …
– http://en.wikipedia.org/wiki/List_of_NP-complete_problems

Next Steps
1. Reflect on the magic and power of Dijkstra’s & Prim’s algorithm!

2. Assignment 10 due on Friday December 7 @ 10pm

