
CS 600.226: Data Structures
Michael Schatz

Nov 28, 2018
Lecture 36: Dijkstra Algorithm

Assignment 9: StringOmics
Out on: November 16, 2018
Due by: November 30, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The ninth assignment focuses on data structures and operations on
strings. In this assignment you will implement encoding and decoding using
the Burrows Wheeler Transform as well as encoding and decoding in a
simple form of run length encoding. In the final problem you will be asked
to measure the space savings using run length encoding with and without
applying the Burrows Wheeler Transform first.

Remember: javac –Xlint:all & checkstyle *.java & Junit
(No JayBee)

Assignment 10: The Streets of Baltimore
Out on: November 30, 2018
Due by: December 7, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The tenth assignment returns to our study of graphs, although this time
we are using a weighted graph rather than the unweighted movie/movie-
star graph. Specifically, you will be touring the streets of Baltimore to find
the shortest route from the JHU campus to other destinations around
Baltimore.

Remember: javac –Xlint:all & checkstyle *.java & Junit
(No JayBee)

Assignment 10: The Streets of Baltimore
Out on: November 30, 2018
Due by: December 7, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The tenth assignment returns to our study of graphs, although this time
we are using a weighted graph rather than the unweighted movie/movie-
star graph. Specifically, you will be touring the streets of Baltimore to find
the shortest route from the JHU campus to other destinations around
Baltimore.

Remember: javac –Xlint:all & checkstyle *.java & Junit
(No JayBee)

We have decided to make the tenth assignment optional.

If you elect to do the assignment it can be used to *replace* the
grade from one of your earlier assignments, so that we will only

consider your 9 highest grades from all of the assignments. If you
submit this assignment but score worse than your previous nine

assignments, this assignment will be dropped.

If you elect to skip the assignment, there will be no penalty,
although we strongly encourage you to do so only if you have very
good grades for the other assignments. Also note that the concepts

and implementation issues that arise for this assignment are all valid
questions for the final exam.

Part 1: Topological Sort
aka Sorting graphs

Scheduling Challenges
• Consider the following class prerequisites:

• 107 is required before taking 120, 226, or 333
• 120 is required before taking 211 or 318
• 226 is required before taking 328
• 333 is required before taking 318 or 328

107

120

226

333

211

318

328

Topological sorting
Analysis of directed, acyclic
graphs (DAGs) with no weights
on the edges
Vertices represent “tasks”,
edges represent some
“before” relationship
Goal: Find a valid sequence
of tasks that fulfill the
ordering constraints

What courses should I take now so I can take all of these by senior year? J

Topological sort

107

120

226

333

211

318

328

1. Pick a node that has no prior
constraints

Since we are working with DAGs there must

be at least 1 such node with indegree 0

120

226

333

211

318

328

2. Remove that node from the DAG and all
incident edges

The node you just removed starts a valid

sequence of classes: 107

120

226

333

211

318

328

3. Arbitrarily pick another “free” node

We could pick 120, 226, or 333. Picking 120

immediately opens up 211, but no new

courses open up by picking 226 or 333

Topological sort
120

226

333

211

318

328

3. Arbitrarily pick another “free” node

We could pick 120, 226, or 333. Picking 120
immediately opens up 211, but no new
courses open up by picking 226 or 333

226

333

211

318

328

4. Remove that node

The valid sequence grows: 107, 120

226

333

211

318

328

5. Repeat!

The valid sequence grows: 107, 120

Topological sort

226

333

211

318

328

5. Repeat!

The valid sequence grows: 107, 120

333

211

318

328

6. Repeat!

The valid sequence grows: 107, 120, 226

333

211

318

328

7. Repeat!

The valid sequence grows: 107, 120, 226

Topological sort
211

318

328

8. Repeat!

The valid sequence grows: 107, 120, 226, 333

318

10. Repeat!

The valid sequence grows: 107, 120, 226,
333, 328, 211

211

318

9. Repeat!

The valid sequence grows: 107, 120, 226,333,
328

Topological sort

10. Repeat!

The valid sequence grows: 107, 120, 226,
333, 328, 211, 318

107

120

226

333

211

318

328

We just found one of potentially many valid
sequences of courses

Alt1: 107, 226, 120, 211, 333, 328, 318
Alt2: 107, 333, 226, 328, 120, 318, 211

What is the running time to find a valid sort?

Linear Time: O(|V|) + O(|E|)

Part 2: Dijkstra’s Algorithm
aka Shortest Path Revisited

Graphs are Everywhere!

One of the most important queries
is finding the (shortest) path from A to B!

00

A

B

C

D

E

F

G

H

L

NJ

I

M

3

X0

0

0

A:1

B:1

C:1

D:2

E:2

G:2

H:2

F:2

L:2

N:4J:3

I:3

M:3

O:3

X

BFS
BFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.getBegin()
if (cur == stop)

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child)

[How many nodes will it visit?]

[What's the running time?]

[What happens for disconnected
components?]

A,B,C

D,E,F,L,G,H
E,F,L,G,H,I
F,L,G,H,I,J
L,G,H,I,J,X
G,H,I,J,X,O
H,I,J,X,O

I,J,X,O,M
J,X,O,M
X,O,M,N
O,M,N
M,N

N

B,C,D,E
C,D,E,F,L

X:3

Why doesn’t BFS work for maps?

500

200200200200200200

400

700

1000

200 200
500

400
600

500

600
400

400

600

Why doesn’t BFS work for maps?

0

500

200200200200200200

400

700

1000

200 200
500

400
600

500

600
400

400

600

Why doesn’t BFS work for maps?

0

500

200

600

500

200200200200200200

400

700

1000

200 200
500

400
600

500

600
400

400

600

Why doesn’t BFS work for maps?

500

200200200200200200

400

700

1000

200 200
500

400
600

500

600
400

400

600

0

500

200400

1500

1100

600

1000

Why doesn’t BFS work for maps?

500

200200200200200200

400

700

1000

200 200
500

400
600

500

600
400

400

600

0

500

1700
20040010001500

1500

1100

600

1200

Why doesn’t BFS work for maps?

500

200200200200200200

400

700

1000

200 200
500

400
600

500

600
400

400

600

0

500

1700
20040010001500

1500

1100

600

1200

Fewest hops != Shortest distance

1200

1700

1700

Why doesn’t BFS work for maps?

500

200200200200200200

400

700

2000

200 200
500

400
600

1500

600
400

400

600

0

500

2700
20040010002500

2500

2100

600

1200

Fewest hops != Shortest distance

What if the path from FL to CA or WI to MT got longer?

Why doesn’t BFS work for maps?

500

200200200200200200

400

700

2000

200 200
500

400
600

1500

600
400

400

600

0

500

2700
20040010002500

2500

2100

600

1200

Fewest hops != Shortest distance

Fewest Hops can be arbitrarily far off from correct answer L

1200

2700

2700

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E

D

FA

B

C

11

4

10

14

9

1

23
17

8

Note, there may not be a path between
those nodes:
- No roads from JHU to U. Hawaii L
- No path between nodes that only have

outgoing edges

=> Report an infinite distance

Most commonly applied to graphs with
non-negative edge weights
- What might happen with negative
weights?

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E

D

FA

B

C

11

4

10

14

9

1

23
17

8

Similar to BFS, maintain a search frontier
of nodes that are further and further away

Unlike BFS, we may have to revise the
distance if we later find a cheaper path

(A->B->C vs A->C)

Similar to BFS, leave breadcrumbs along
the way so we can retrace the path

Similar to BFS, initialize the nodes as
unvisited, and record the distance from
start in the node

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

Lets start with node A

Initialize the distance to A as 0, and the
distance everywhere else as infinity

Lets explore all possible paths starting at
A (all outgoing edges from A)

Revise if the total distance we just
traveled is less than the previously
recorded distance (boring this round)

Repeat! … repeat where?

Repeat on all nodes that just had their
distance updated!

Whats wrong with
this algorithm?

Correct but slow, same
edges may be explored
many times O(|V| * |E|)

D

E

A

B

C
1

1

1

F

GGH

13 5

7 1

1
11

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

E

D

FA

B

C

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
∞

F
∞

A
0

B
∞

C
∞

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
∞

F
∞

A
0

B
∞

C
∞

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
8

F
10

A
0

B
4

C
17

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
8

F
10

A
0

B
4

C
17

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
8

F
10

A
0

B
4

C
17

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
∞

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
17

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
17

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
17

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
17

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
17

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
16

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
16

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
16

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
16

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

No more unvisited nodes! Done

If we are looking for a path between a
particular pair, could we terminate early?

Yes! As soon as we are done with target
node, its distance will never change
again

14

9

23
17

Dijkstra’s Algorithm
Rather than uniformly pushing the whole
search frontier like BFS, lets greedily
push out the shortest paths so far

As before, initialize distance to start (A) as
0, and “estimated distance” to every other
node as infinity

Repeatedly pick the unvisited node with the
smallest estimated distance, and revise the
distances of its children

E
16

D
8

F
10

A
0

B
4

C
15

11

4

10

1

8

No more unvisited nodes! Done

If we are looking for a path between a
particular pair, could we terminate early?

Yes! As soon as we are done with target
node, its distance will never change
again

We are building a tree
inside the graph of shortest

paths from start J

Dijkstra’s Correctness

• Assume that Dikjstra’s algorithm has correctly found the shortest path to the
first N items, including from S to X and U (but not yet Y or V)

• It now decides the next closest node to visit is v, using the edge from u
Could there be some other shorter path to v (through y)?

S

U

X

V

Y

No: cost(S->X->Y) must be greater than or equal to cost(S->U->V) (and therefore
cost(S->X->Y->V) must be even greater) or it would be visiting node Y next

Dijkstra’s Pseudocode
dijkstra(graph, start):
distance = {}
for v in graph.vertices:

distance[v] = infinity
distance[start] = 0
unvisited = graph.vertices
unvisited.remove(start)

current = start
while !unvisted.empty()

for e in current.outgoing:
v = e.toVertex
if v in unvisited:

d = distance[current] + e.weight
if d < distance[v]:

distance[v] = d
unvisited.remove(current)
current = unvisited.findSmallestDistance()
if distance[current] == infinity:

break

Advance
smallest

In case >1
connected
components

Initialize distance to infinity
except for start node

Initialize the set of
unvisited nodes with

everything except start

Update the
distances from
the current
node

Dijkstra’s Pseudocode
dijkstra(graph, start):
distance = {}
for v in graph.vertices:

distance[v] = infinity
distance[start] = 0
unvisited = graph.vertices
unvisited.remove(start)

current = start
while !unvisted.empty()

for e in current.outgoing:
v = e.toVertex
if v in unvisited:

d = distance[current] + e.weight
if d < distance[v]:

distance[v] = d
unvisited.remove(current)
current = unvisited.findSmallestDistance()
if distance[current] == infinity:

break

Running time?

Explore every edge once,
Visit every node once

At every node, scan the
unvisited nodes to find
next smallest distance

O(|E| + |V|2)

Can you do better?

Dijkstra’s Pseudocode
dijkstra(graph, start):
distance = {}
for v in graph.vertices:

distance[v] = infinity
distance[start] = 0
unvisited = graph.vertices
unvisited.remove(start)

current = start
while !unvisted.empty()

for e in current.outgoing:
v = e.toVertex
if v in unvisited:

d = distance[current] + e.weight
if d < distance[v]:

distance[v] = d
unvisited.remove(current)
current = unvisited.findSmallestDistance()
if distance[current] == infinity:

break

If only there was a data
structure that would let us
find the minimum element

very quickly ;-)

HEAP!

More specifically:
MinPriorityQueue!

dijkstra(graph, start):
distance = {}

for v in graph.vertices:
if v == start

distance[v] = 0
else

distance[v] = infinity
PQ.add_with_priority(v, distance[v])

while !PQ.empty()
cur = PQ.extract_min()
if distance[current] == infinity:

break
for e in current.outgoing:

v = e.toVertex
if PQ.has(v):

d = distance[current] + e.weight
if d < distance[v]:

distance[v] = d
PQ.decrease_priority(v,d)

A min-priority queue
that supports
extract_min(),

add_with_priority(),
decrease_priority()

and has()

Now Dikstra will run in
O(|E| lg |V|)

Dijkstra with Priority Queue

Notice we have to do
work on every edge

Normally checking if a
node is in the PQ

would require O(n) but
can store references

to make it fast

public interface PriorityQueue<T extends Comparable<T>> {
void insert(T t);
void remove() throws EmptyQueueException;
T top() throwsEmptyQueueException;
boolean empty();

}

Min-priority queue

public interface MinPriorityQueue<K, P extends Comparable<T>> {
void addWithPriority(K key, P priority);
void decreasePriority(K key, P newp) throws InvalidItem;
T extractMin() throws EmptyQueueException;
boolean empty();
boolean has();

}

Allows for priorities to be reset for keys inside the PQ

Min-priority queue

public interface MinPriorityQueue<K, P extends Comparable<T>> {
void addWithPriority(K key, P priority);
void decreasePriority(K key, P newp) throws InvalidItem;
T extractMin() throws EmptyQueueException;
boolean empty();
boolean has();

}

Mike/0
/ \

Peter/7 Kelly/1
/ \ /

Katherine/9 Sydney/7 James/2

MPQ

heap

keys

Ja
m
es

Ka
th
er
in
e

Ke
lly

M
ik
e

Pe
te
r

Sy
dn
ey

Min-priority queue

public interface MinPriorityQueue<K, P extends Comparable<T>> {
void addWithPriority(K key, P priority);
void decreasePriority(K key, P newp) throws InvalidItem;
T extractMin() throws EmptyQueueException;
boolean empty();
boolean has();

}

Mike/0
/ \

Peter/7 Kelly/1
/ \ /

Katherine/9 Sydney/7 James/2

MPQ

heap

keys

Ja
m

es
Ka

th
er

in
e

Ke
lly

M
ik

e
Pe

te
r

Sy
dn

ey

How to
implement?

(1) If keys are
integers in the
range 0 to n,

make an array of
references

(2) Use a
HashMap from
keys to hash

(3) Give client a
reference, store
in graph node

Fibonnaci Heap
Special form of heaps specifically designed to allow fast updates to values
• Set of heap-ordered trees (value(n) < value(n.children))
• Maintain pointer to overall minimum element
• Set of marked nodes used to track heights of certain trees

Find-
min

Delete-
min

Insert Decrease-
key

Merge

Binary Heap O(1) O(lg n) O(lg n) O(lg n) O(n)

Fibonnaci Heap O(1) O(lg n) O(1) O(1) O(1)

Reduces Dijkstra’s run time to O(|E| + |V| lg |V|) Not on final J

Next Steps
1. Reflect on the magic and power of Sorting!

2. Assignment 10 due on Friday December 7 @ 10pm

