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Assignment 9: StringOmics
Out on: November 16, 2018
Due by: November 30, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The ninth assignment focuses on data structures and operations on 
strings. In this assignment you will implement encoding and decoding using 
the Burrows Wheeler Transform as well as encoding and decoding in a 
simple form of run length encoding. In the final problem you will be asked 
to measure the space savings using run length encoding with and without 
applying the Burrows Wheeler Transform first.

Remember: javac –Xlint:all & checkstyle *.java & Junit
(No JayBee)



Assignment 10:  The Streets of Baltimore
Out on: November 30, 2018
Due by: December 7, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The tenth assignment returns to our study of graphs, although this time
we are using a weighted graph rather than the unweighted movie/movie-
star graph. Specifically, you will be touring the streets of Baltimore to find
the shortest route from the JHU campus to other destinations around
Baltimore.

Remember: javac –Xlint:all & checkstyle *.java & Junit
(No JayBee)
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We have decided to make the tenth assignment optional. 

If you elect to do the assignment it can be used to *replace* the 
grade from one of your earlier assignments, so that we will only 

consider your 9 highest grades from all of the assignments. If you 
submit this assignment but score worse than your previous nine 

assignments, this assignment will be dropped. 

If you elect to skip the assignment, there will be no penalty, 
although we strongly encourage you to do so only if you have very 
good grades for the other assignments. Also note that the concepts 

and implementation issues that arise for this assignment are all valid 
questions for the final exam.



Part 1: Topological Sort
aka Sorting graphs



Scheduling Challenges
• Consider the following class prerequisites:

• 107 is required before taking 120, 226, or 333
• 120 is required before taking 211 or 318
• 226 is required before taking 328
• 333 is required before taking 318 or 328

107

120

226

333

211

318

328

Topological sorting
Analysis of directed, acyclic 
graphs (DAGs) with no weights 
on the edges
Vertices represent “tasks”, 
edges represent some 
“before” relationship
Goal: Find a valid sequence 
of tasks that fulfill the 
ordering constraints

What courses should I take now so I can take all of these by senior year? J



Topological sort

107

120

226

333

211

318

328

1. Pick a node that has no prior 
constraints

Since we are working with DAGs there must 

be at least 1 such node with indegree 0

120

226

333

211

318

328

2. Remove that node from the DAG and all 
incident edges

The node you just removed starts a valid 

sequence of classes: 107

120

226

333

211

318

328

3. Arbitrarily pick another “free” node

We could pick 120, 226, or 333. Picking 120 

immediately opens up 211, but no new 

courses open up by picking 226 or 333



Topological sort
120
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328

3. Arbitrarily pick another “free” node

We could pick 120, 226, or 333. Picking 120 
immediately opens up 211, but no new 
courses open up by picking 226 or 333

226

333

211

318

328

4. Remove that node

The valid sequence grows: 107, 120 

226

333

211

318

328

5. Repeat!

The valid sequence grows: 107, 120 



Topological sort

226
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5. Repeat!

The valid sequence grows: 107, 120 

333

211

318

328

6. Repeat!

The valid sequence grows: 107, 120, 226 

333

211

318

328

7. Repeat!

The valid sequence grows: 107, 120, 226 



Topological sort
211

318

328

8. Repeat!

The valid sequence grows: 107, 120, 226, 333 

318

10. Repeat!

The valid sequence grows: 107, 120, 226, 
333, 328, 211 

211

318

9. Repeat!

The valid sequence grows: 107, 120, 226,333, 
328 



Topological sort

10. Repeat!

The valid sequence grows: 107, 120, 226, 
333, 328, 211, 318 

107

120

226

333

211

318

328

We just found one of potentially many valid 
sequences of courses

Alt1: 107, 226, 120, 211, 333, 328, 318
Alt2: 107, 333, 226, 328, 120, 318, 211

What is the running time to find a valid sort?

Linear Time: O(|V|) + O(|E|)



Part 2: Dijkstra’s Algorithm
aka Shortest Path Revisited



Graphs are Everywhere!

One of the most important queries 
is finding the (shortest) path from A to B!



00

A

B

C

D

E

F

G

H

L

NJ

I

M

3

X0

0

0

A:1

B:1

C:1

D:2

E:2

G:2

H:2

F:2

L:2

N:4J:3

I:3

M:3

O:3

X

BFS
BFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.getBegin()
if (cur == stop) 

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child) 

[How many nodes will it visit?]

[What's the running time?]

[What happens for disconnected
components?]

A,B,C

D,E,F,L,G,H
E,F,L,G,H,I
F,L,G,H,I,J
L,G,H,I,J,X
G,H,I,J,X,O
H,I,J,X,O

I,J,X,O,M
J,X,O,M
X,O,M,N
O,M,N
M,N

N

B,C,D,E
C,D,E,F,L

X:3



Why doesn’t BFS work for maps?
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Why doesn’t BFS work for maps?
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Why doesn’t BFS work for maps?
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What if the path from FL to CA or WI to MT got longer?



Why doesn’t BFS work for maps?
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Simple Shortest Path Algorithm

Given a weighted directed graph, find the 
shortest (minimum weight) path from one 
start node to one final node.
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Note, there may not be a path between 
those nodes: 
- No roads from JHU to U. Hawaii L
- No path between nodes that only have 

outgoing edges

=> Report an infinite distance

Most commonly applied to graphs with 
non-negative edge weights
- What might happen with negative 
weights?



Simple Shortest Path Algorithm

Given a weighted directed graph, find the 
shortest (minimum weight) path from one 
start node to one final node.
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Similar to BFS, maintain a search frontier 
of nodes that are further and further away

Unlike BFS, we may have to revise the 
distance if we later find a cheaper path

(A->B->C vs A->C)

Similar to BFS, leave breadcrumbs along 
the way so we can retrace the path

Similar to BFS, initialize the nodes as 
unvisited, and record the distance from 
start in the node



Simple Shortest Path Algorithm

Given a weighted directed graph, find the 
shortest (minimum weight) path from one 
start node to one final node.

Lets start with node A

Initialize the distance to A as 0, and the 
distance everywhere else as infinity

Lets explore all possible paths starting at 
A (all outgoing edges from A)

Revise if the total distance we just 
traveled is less than the previously 
recorded distance (boring this round)

Repeat! … repeat where?

Repeat on all nodes that just had their 
distance updated!

Whats wrong with
this algorithm?

Correct but slow, same 
edges may be explored 
many times O(|V| * |E|)
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C
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Dijkstra’s Algorithm
Rather than uniformly pushing the whole 
search frontier like BFS, lets greedily 
push out the shortest paths so far

As before, initialize distance to start (A) as 
0, and “estimated distance” to every other 
node as infinity
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Repeatedly pick the unvisited node with the 
smallest estimated distance, and revise the 
distances of its children
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No more unvisited nodes! Done

If we are looking for a path between a 
particular pair, could we terminate early?

Yes! As soon as we are done with target 
node, its distance will never change 
again
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Dijkstra’s Algorithm
Rather than uniformly pushing the whole 
search frontier like BFS, lets greedily 
push out the shortest paths so far

As before, initialize distance to start (A) as 
0, and “estimated distance” to every other 
node as infinity

Repeatedly pick the unvisited node with the 
smallest estimated distance, and revise the 
distances of its children
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No more unvisited nodes! Done

If we are looking for a path between a 
particular pair, could we terminate early?

Yes! As soon as we are done with target 
node, its distance will never change 
again

We are building a tree 
inside the graph of shortest 

paths from start J



Dijkstra’s Correctness

• Assume that Dikjstra’s algorithm has correctly found the shortest path to the 
first N items, including from S to X and U (but not yet Y or V)

• It now decides the next closest node to visit is v, using the edge from u
Could there be some other shorter path to v (through y)?

S

U

X

V

Y

No: cost(S->X->Y) must be greater than or equal to cost(S->U->V) (and therefore 
cost(S->X->Y->V) must be even greater) or it would be visiting node Y next



Dijkstra’s Pseudocode
dijkstra(graph, start):
distance = {}
for v in graph.vertices:

distance[v] = infinity 
distance[start] = 0 
unvisited = graph.vertices
unvisited.remove(start) 

current = start
while !unvisted.empty()

for e in current.outgoing:
v = e.toVertex
if v in unvisited:

d = distance[current] + e.weight
if d < distance[v]:

distance[v] = d
unvisited.remove(current)
current = unvisited.findSmallestDistance()
if distance[current] == infinity:

break

Advance 
smallest

In case >1 
connected 
components

Initialize distance to infinity 
except for start node

Initialize the set of 
unvisited nodes with 

everything except start

Update the 
distances from 
the current 
node



Dijkstra’s Pseudocode
dijkstra(graph, start):
distance = {}
for v in graph.vertices:

distance[v] = infinity 
distance[start] = 0 
unvisited = graph.vertices
unvisited.remove(start) 

current = start
while !unvisted.empty()

for e in current.outgoing:
v = e.toVertex
if v in unvisited:

d = distance[current] + e.weight
if d < distance[v]:

distance[v] = d
unvisited.remove(current)
current = unvisited.findSmallestDistance()
if distance[current] == infinity:

break

Running time?

Explore every edge once, 
Visit every node once

At every node, scan the 
unvisited nodes to find 
next smallest distance

O(|E| + |V|2)

Can you do better?



Dijkstra’s Pseudocode
dijkstra(graph, start):
distance = {}
for v in graph.vertices:

distance[v] = infinity 
distance[start] = 0 
unvisited = graph.vertices
unvisited.remove(start)

current = start
while !unvisted.empty()

for e in current.outgoing:
v = e.toVertex
if v in unvisited:

d = distance[current] + e.weight
if d < distance[v]:

distance[v] = d
unvisited.remove(current)
current = unvisited.findSmallestDistance()
if distance[current] == infinity:

break

If only there was a data 
structure that would let us 
find the minimum element 

very quickly ;-)

HEAP! 

More specifically: 
MinPriorityQueue!



dijkstra(graph, start):
distance = {}

for v in graph.vertices:
if v == start

distance[v] = 0
else

distance[v] = infinity 
PQ.add_with_priority(v, distance[v])

while !PQ.empty()
cur = PQ.extract_min()
if distance[current] == infinity:

break
for e in current.outgoing:

v = e.toVertex
if PQ.has(v):

d = distance[current] + e.weight
if d < distance[v]:

distance[v] = d
PQ.decrease_priority(v,d)

A min-priority queue 
that supports 
extract_min(), 

add_with_priority(), 
decrease_priority()

and has()

Now Dikstra will run in 
O(|E| lg |V|)

Dijkstra with Priority Queue

Notice we have to do 
work on every edge

Normally checking if a 
node is in the PQ 

would require O(n) but 
can store references 

to make it fast



public interface PriorityQueue<T extends Comparable<T>> { 
void insert(T t);
void remove() throws EmptyQueueException;
T top() throwsEmptyQueueException;
boolean empty(); 

}

Min-priority queue

public interface MinPriorityQueue<K, P extends Comparable<T>> { 
void addWithPriority(K key, P priority);
void decreasePriority(K key, P newp) throws InvalidItem;
T extractMin() throws EmptyQueueException;
boolean empty(); 
boolean has();

}

Allows for priorities to be reset for keys inside the PQ



Min-priority queue

public interface MinPriorityQueue<K, P extends Comparable<T>> { 
void addWithPriority(K key, P priority);
void decreasePriority(K key, P newp) throws InvalidItem;
T extractMin() throws EmptyQueueException;
boolean empty(); 
boolean has();

}
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Min-priority queue

public interface MinPriorityQueue<K, P extends Comparable<T>> { 
void addWithPriority(K key, P priority);
void decreasePriority(K key, P newp) throws InvalidItem;
T extractMin() throws EmptyQueueException;
boolean empty(); 
boolean has();

}
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How to 
implement?

(1) If keys are 
integers in the 
range 0 to n, 

make an array of 
references

(2) Use a 
HashMap from 
keys to hash

(3) Give client a 
reference, store 
in graph node



Fibonnaci Heap
Special form of heaps specifically designed to allow fast updates to values
• Set of heap-ordered trees (value(n) < value(n.children))
• Maintain pointer to overall minimum element
• Set of marked nodes used to track heights of certain trees

Find-
min

Delete-
min

Insert Decrease-
key

Merge

Binary Heap O(1) O(lg n) O(lg n) O(lg n) O(n)

Fibonnaci Heap O(1) O(lg n) O(1) O(1) O(1)

Reduces Dijkstra’s run time to O(|E| + |V| lg |V|) Not on final J



Next Steps
1. Reflect on the magic and power of Sorting!

2. Assignment 10 due on Friday December 7 @ 10pm


