
CS 600.226: Data Structures
Michael Schatz

Nov 28, 2018
Lecture 35: Topological Sorting

Assignment 9: StringOmics
Out on: November 16, 2018
Due by: November 30, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The ninth assignment focuses on data structures and operations on
strings. In this assignment you will implement encoding and decoding using
the Burrows Wheeler Transform as well as encoding and decoding in a
simple form of run length encoding. In the final problem you will be asked
to measure the space savings using run length encoding with and without
applying the Burrows Wheeler Transform first.

Remember: javac –Xlint:all & checkstyle *.java & Junit
(No JayBee)

Part 1: Really Advanced Sorting

Quicksort
• Selection sort is slow because it rescans the entire list for each element

• How can we split up the unsorted list into independent ranges?
• Hint 1: Binary search splits up the problem into 2 independent ranges (hi/lo)
• Hint 2: Assume we know the median value of a list

n

[How many times can we split a list in half?]

=< > 2 x n/2

=< > = =< > 4 x n/4

< = > = < = > = < = > = < = > 8 x n/8

16 x n/16

2i x n/2i

In-place Partitioning

p

2. Move p to front. Invariant: Elements 1..i-1 are <p; j+1..n-1 are >p

i j

p1. Pick pivot element p (at random, median, etc)

i j

p
3. while (i < j), compare a[i] with p

x

p
i j

x

p
i j

x

x<p

x>p

< >
i j

p
4. Repeat …

x

In-place Partitioning

< >
i j

p
4. Repeat …

x

< >
ij

p
5. Finish

< >
ij

p
6. Swap

7. Recurse
p

Advanced Sorting Review

Heap Sort

Add everything to a heap,
remove from biggest to

smallest

O(n lg n) worst case

Big constants

Merge Sort

Divide input into n lists,
merge pairs of sorted

lists as a tree

O(n lg n) worst case

O(n) space overhead

QuickSort

Recursively partition
input into low/high based

on a pivot

O(n2) worse case,
O(n lg n) typical

Very fast in practice

Decision Tree of Searching
How many comparisons are made to binary search in an array with 3 items?

arr

0 1 2

x y z

k < y

k < x k < z

yes no

k < x x ≤ k < y y ≤ k < z z ≤ k

yes no noyes

The decision tree encodes the execution over all possible input values
The decision tree is a binary tree, each node encodes exactly 1 comparison

The decision tree for searching has n leaf nodes (since there are n “slots” for k)

Searching by comparisons requires at least O(lg n) comparisons (lower bound)

Decision Tree of Sorting
Notice that sorting 3 items (a,b,c) may have 3 != 6 possible permutations

a < b < c
a < c < b
b < a < c
b < c < a
c < a < b
c < b < a

Initially we don’t know which one of these permutations is the correctly sorted version,
but we can make pairwise comparisons to figure it out

a[i] < a[j]

a[k] < a[i] a[k] < a[i]

yes no

In the worst case, how many comparisons are needed?

Decision Tree of Sorting

a ? b ? c

a < b ? c b < a ? c

a<b a>b

a < b < c a<b, c<b

b<c b>c

a < c < b

a<c

c < a < b

a>c

b < a < c b<a, c<a

a<c a>c

b < c < a

b<c

c < b < a

b>c

Notice that we have all 3 != 6 possibilities as leaf nodes

How tall is a tree with n! leaf nodes?

O(lg n!) whattt???

http://bigocheatsheet.com/

Growth of functions

Saying the minimum height is O(1) is true, but not interesting J
Want to say “minimum height is >= something” as tightly as possible

0 200 400 600 800 1000

0
2

4
6

8
10

s

l

Decision Tree of Sorting
What is O(lg n!)

lg(n!) = lg(n * (n-1) * (n-2) * … * 2 * 1)

lg(n!) = lg(n) + lg(n-1) + lg(n-2) + … + lg(2) + lg(1)

lg(n!) ≤ lg(n) + lg(n) + lg(n) + … + lg(n) + lg(n)

lg(n!) ≤ n lg n

This is true, but the wrong direction to prove a lower bound.
Need to show lg(n!) ≥ something instead

Because lg grows so slowly,
Just sum from n/2 to n

Any comparison based sorting algorithm requires at least O(n lg n)

n/2

lg
(n

/2
)

Alternate Analysis
What is O(lg n!)

Stirling’s aproximation

lg(n!) ~ lg((√2πn) (n/e)n)

lg(n!) ~ lg(√2πn) + lg((n/e)n)

lg(n!) ~ lg((2πn)½) + lg((n/e)n)

lg(n!) ~ ½ lg(2πn) + n lg(n/e)

lg(n!) ~ O(lg n + n lg n - n)

lg(n!) ~ O(n lg n) Same result, if you have Stirling’s
approximation memorized J

lg(n!) ~ ½ lg(2πn) + n lg(n) - n lg(e)

Part 2: Really Really Advanced Sorting

Sorting in Linear Time
• Can we sort faster than O(n lg n)?

• No – Not if we have to compare elements to each other
• Yes – But we have to 'cheat' and know the structure of the data J

Sort these numbers into ascending order:
14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,
76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100

Sorting in Linear Time
• Can we sort faster than O(n lg n)?

• No – Not if we have to compare elements to each other
• Yes – But we have to 'cheat' and know the structure of the data

Sort these numbers into ascending order:
14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,
76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100

Sorting in Linear Time
• Can we sort faster than O(n lg n)?

• No – Not if we have to compare elements to each other
• Yes – But we have to 'cheat' and know the structure of the data

Sort these numbers into ascending order:
14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,
76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100

6,13,14,19,29,31,39,50,61,63,64,78

for(i = 1 to 100) { range[i] = 0; }
for(i = 1 to n) { range[list[i]] = 1; }
for(i = 1 to l00) { if (range[i] == 1){print i}}

<- Mark it was present

What if 13 occurred twice?

Sorting in Linear Time
• Can we sort faster than O(n lg n)?

• No – Not if we have to compare elements to each other
• Yes – But we have to 'cheat' and know the structure of the data

Sort these numbers into ascending order:
14, 29, 6, 31, 39, 64, 78, 50, 13, 63, 61, 19

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,
51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,
76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100

6,13,14,19,29,31,39,50,61,63,64,78

for(i = 1 to 100) { range[i] = 0; }
for(i = 1 to n) { range[list[i]]++; }
for(i = 1 to l00) { for (j = 0; j < range[i]; j++){print i}}

<- Counting sort

Sorting in Linear Time
Counting Sort

Input:
0,4,2,2,0,0,1,1,0,1,0,2,4,2

Count Array:

Idx: 0 1 2 3 4
Cnt: 5 3 4 0 2

Sorted:
0,0,0,0,0,1,1,1,2,2,2,2,4,4

Uses the input values as
indices into array of counts

Very fast, but requires a
(potentially very) large array to

store the counts

Bucket Sort

Divide data into k buckets,
sort data within each bucket,

and output in sorted order

Sort in O(n) if k is O(n) and
O(1) items per bucket

Sorting in Linear Time
Bucket Sort

Divide data into k buckets,
sort data within each bucket,

and output in sorted order

Sort in O(n) if k is O(n) and
O(1) items per bucket

What does bucket sort remind you of?

More advanced radix sort uses bucket
sort to achieve linear time integer
sorting over essentially unlimited range
of integer values
• Range may be a polynomial in n,

even up to n100

Just like hashing, want a small (~1)
number of items per bucket, meaning
number of buckets must be at least n
(but not too much more than n)

Just like hashing, gets bad
performance if the values to sort are
clustered together

Sorting Suffixes in linear Time
Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

TTAC
AGATTACC…

C…

C

GATTAC

T

…
AGATTACC…

CC…

AGATTACC…

C…

AC
GATTACAGATTACC…

TAC

AGATTACC…

C…

AGATTACC…

C…

Suffix Tree = Tree of suffixes (indexes all substrings of a sequence)
• 1 Leaf ($) for each suffix, path-label to leaf spells the suffix
• Nodes have at least 2 and at most 5 children (A,C,G,T,$)

Sorting Suffixes in linear Time
Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

A

C

AGATTACC…

C…
GATTACC…

TTAC
AGATTACC…

C…

C

GATTAC

T

…
AGATTACC…

CC…

AGATTACC…

C…

AC
GATTACAGATTACC…

TAC

AGATTACC…

C…

AGATTACC…

C…

Suffix Tree = Tree of suffixes (indexes all substrings of a sequence)
• 1 Leaf ($) for each suffix, path-label to leaf spells the suffix
• Nodes have at least 2 and at most 5 children (A,C,G,T,$)

Linear time construction takes about a month of grad school to understand J

Can search for any query is linear time (independent of the size of the text)

Can compute the suffix array or BWT in linear time

Part 3: Topological Sort
aka Sorting graphs

Scheduling Challenges
• Consider the following class prerequisites:

• 107 is required before taking 120, 226, or 333
• 120 is required before taking 211 or 318
• 226 is required before taking 328
• 333 is required before taking 318 or 328

107

120

226

333

211

318

328

Any ideas?

What courses should I take now so I can take all of these by senior year? J

Scheduling Challenges
• Consider the following class prerequisites:

• 107 is required before taking 120, 226, or 333
• 120 is required before taking 211 or 318
• 226 is required before taking 328
• 333 is required before taking 318 or 328

107

120

226

333

211

318

328

Topological sorting
Analysis of directed, acyclic
graphs (DAGs) with no weights
on the edges
Vertices represent “tasks”,
edges represent some
“before” relationship
Goal: Find a valid sequence
of tasks that fulfill the
ordering constraints

What courses should I take now so I can take all of these by senior year? J

Topological sort

107

120

226

333

211

318

328

1. Pick a node that has no prior
constraints

Since we are working with DAGs there must
be at least 1 such node with indegree 0

Topological sort

107

120

226

333

211

318

328

1. Pick a node that has no prior
constraints

Since we are working with DAGs there must
be at least 1 such node with indegree 0

120

226

333

211

318

328

2. Remove that node from the DAG and all
incident edges

The node you just removed starts a valid
sequence of classes: 107

120

226

333

211

318

328

3. Arbitrarily pick another “free” node

Removing one node will generally “open up”
one or more additional nodes

Topological sort

107

120

226

333

211

318

328

1. Pick a node that has no prior
constraints

Since we are working with DAGs there must

be at least 1 such node with indegree 0

120

226

333

211

318

328

2. Remove that node from the DAG and all
incident edges

The node you just removed starts a valid

sequence of classes: 107

120

226

333

211

318

328

3. Arbitrarily pick another “free” node

We could pick 120, 226, or 333. Picking 120

immediately opens up 211, but no new

courses open up by picking 226 or 333

Topological sort
120

226

333

211

318

328

3. Arbitrarily pick another “free” node

We could pick 120, 226, or 333. Picking 120
immediately opens up 211, but no new
courses open up by picking 226 or 333

226

333

211

318

328

4. Remove that node

The valid sequence grows: 107, 120

226

333

211

318

328

5. Repeat!

The valid sequence grows: 107, 120

Topological sort

226

333

211

318

328

5. Repeat!

The valid sequence grows: 107, 120

333

211

318

328

6. Repeat!

The valid sequence grows: 107, 120, 226

333

211

318

328

7. Repeat!

The valid sequence grows: 107, 120, 226

Topological sort
211

318

328

8. Repeat!

The valid sequence grows: 107, 120, 226, 333

318

10. Repeat!

The valid sequence grows: 107, 120, 226,
333, 328, 211

211

318

9. Repeat!

The valid sequence grows: 107, 120, 226,333,
328

Topological sort

10. Repeat!

The valid sequence grows: 107, 120, 226,
333, 328, 211, 318

107

120

226

333

211

318

328

We just found one of potentially many valid
sequences of courses

Alt1: 107, 226, 120, 211, 333, 328, 318
Alt2: 107, 333, 226, 328, 120, 318, 211

What is the running time to find a valid sort?

Linear Time: O(|V|) + O(|E|)

Data Dependency Graphs
Please evaluate this expression: (a + b + c) * (b – (a / c))

*
/ \

+ -
/ \ / \
a + b /

/ \ / \
b c a c

Figure out the prerequisites for each pairwise
step: load the variables first, multiple and divide
before addition and subtraction

Hooray: the expression tree will do this for us,
working from the bottom up.

Under an abstract compute model, it
doesn’t matter which comes first.

In practice division (8 units) takes much
longer than addition/subtraction (1 unit) or
multiplication (2 units) and may be
offloaded to a separate functional unit that
can work in parallel

Left first: 1+1+8+1+2=13

Right first: 8+0+0+1+2=11

We clearly need to load the values a,b,c first,
but should we add next or divide next? *

/ \
+ -
\ \
+ /

Topological Sorting

107

120

226

333

211

318

328

Topological sorting
Analysis of directed, acyclic
graphs (DAGs) with no weights
on the edges
Vertices represent “tasks”,
edges represent some
“before” relationship
Goal: Find a valid sequence
of tasks that fulfill the
ordering constraints

Part 4: Dijkstra’s Algorithm
aka Shortest Path Revisited

Graphs are Everywhere!

One of the most important queries
is finding the (shortest) path from A to B!

Kevin Bacon and Bipartite Graphs
72

60

35

31

45

Find the shortest
path from

Kevin Bacon
to

Jason Lee

Breadth First Search:
4 hops

Bacon Distance:
2

00

A

B

C

D

E

F

G

H

L

NJ

I

M

3

X0

0

0

A:1

B:1

C:1

D:2

E:2

G:2

H:2

F:2

L:2

N:4J:3

I:3

M:3

O:3

X

BFS
BFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.getBegin()
if (cur == stop)

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child)

[How many nodes will it visit?]

[What's the running time?]

[What happens for disconnected
components?]

A,B,C

D,E,F,L,G,H
E,F,L,G,H,I
F,L,G,H,I,J
L,G,H,I,J,X
G,H,I,J,X,O
H,I,J,X,O

I,J,X,O,M
J,X,O,M
X,O,M,N
O,M,N
M,N

N

B,C,D,E
C,D,E,F,L

X:3

Breath First Searching

Why doesn’t BFS work for maps?

500

200200200200200200

400

700

1000

200 200
500

400
600

500

600
400

400

600

Why doesn’t BFS work for maps?

0

500

200200200200200200

400

700

1000

200 200
500

400
600

500

600
400

400

600

Why doesn’t BFS work for maps?

0

500

200

600

500

200200200200200200

400

700

1000

200 200
500

400
600

500

600
400

400

600

Why doesn’t BFS work for maps?

500

200200200200200200

400

700

1000

200 200
500

400
600

500

600
400

400

600

0

500

200400

1500

1100

600

1000

Why doesn’t BFS work for maps?

500

200200200200200200

400

700

1000

200 200
500

400
600

500

600
400

400

600

0

500

1700
20040010001500

1500

1100

600

1200

Why doesn’t BFS work for maps?

500

200200200200200200

400

700

1000

200 200
500

400
600

500

600
400

400

600

0

500

1700
20040010001500

1500

1100

600

1200

Fewest hops != Shortest distance

1200

1700

1700

Why doesn’t BFS work for maps?

500

200200200200200200

400

700

2000

200 200
500

400
600

1500

600
400

400

600

0

500

2700
20040010002500

2500

2100

600

1200

Fewest hops != Shortest distance

What if the path from FL to CA or WI to WY got longer?

Why doesn’t BFS work for maps?

500

200200200200200200

400

700

2000

200 200
500

400
600

1500

600
400

400

600

0

500

2700
20040010002500

2500

2100

600

1200

Fewest hops != Shortest distance

Fewest Hops can be arbitrarily far off from correct answer L

1200

2700

2700

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E

D

FA

B

C

11

4

10

14

9

1

23
17

8

Note, there may not be a path between
those nodes:
- No roads from JHU to U. Hawaii L
- No path between nodes that only have

outgoing edges

=> Report an infinite distance

Most commonly applied to graphs with
non-negative edge weights
- What might happen with negative
weights?

Any ideas?

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E

D

FA

B

C

11

4

10

14

9

1

23
17

8

Similar to BFS, maintain a search frontier
of nodes that are further and further away

Unlike BFS, we may have to revise the
distance if we later find a cheaper path

(A->B->C vs A->C)

Similar to BFS, leave breadcrumbs along
the way so we can retrace the path

Similar to BFS, initialize the nodes as
unvisited, and record the distance from
start in the node

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E

D

FA

B

C

11

4

10

14

9

1

23
17

8

Lets start with node A

Initialize the distance to A as 0, and the
distance everywhere else as infinity

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E
∞

D
∞

F
∞

A
0

B
∞

C
∞

11

4

10

14

9

1

23
17

8

Lets start with node A

Initialize the distance to A as 0, and the
distance everywhere else as infinity

Lets explore all possible paths starting at
A (all outgoing edges from A)

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E
∞

D
∞

F
∞

A
0

B
∞

C
∞

11

4

10

14

9

1

23
17

8

Lets start with node A

Initialize the distance to A as 0, and the
distance everywhere else as infinity

Lets explore all possible paths starting at
A (all outgoing edges from A)

Revise if the total distance we just
traveled is less than the previously
recorded distance (boring this round)

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E
∞

D
8

F
10

A
0

B
4

C
17

11

4

10

14

9

1

23
17

8

Lets start with node A

Initialize the distance to A as 0, and the
distance everywhere else as infinity

Lets explore all possible paths starting at
A (all outgoing edges from A)

Revise if the total distance we just
traveled is less than the previously
recorded distance (boring this round)

Repeat! … repeat where?

Repeat on all nodes that just had their
distance updated!

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E
∞

D
8

F
10

A
0

B
4

C
17

11

4

10

14

9

1

23
17

8

Repeat on all nodes that just had their
distance updated!

Notice that we only need to explore the
edges out from the nodes that were just
updated

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E
∞

D
8

F
10

A
0

B
4

C
17

11

4

10

14

9

1

23
17

8

Repeat on all nodes that just had their
distance updated!

Notice that we only need to explore the
edges out from the nodes that were just
updated

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E
∞

D
8

F
10

A
0

B
4

C
17

11

4

10

14

9

1

23
17

8

Repeat on all nodes that just had their
distance updated!

Notice that we only need to explore the
edges out from the nodes that were just
updated

Now set the distance of the active
(yellow) nodes as the minimum of the
incoming distances: distance to C is reset
from 17 to 15 and E is set to 17 from D

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E
17

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Repeat on all nodes that just had their
distance updated!

Notice that we only need to explore the
edges out from the nodes that were just
updated

Now set the distance of the active
(yellow) nodes as the minimum of the
incoming distances: distance to C is reset
from 17 to 15 and E is set to 17 from D

Even though the distance to C was
previously set, mark that we need to
repeat on its outgoing edges

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E
17

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Even though the distance to C was
previously set, mark that we need to
repeat on its outgoing edges

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E
17

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

Even though the distance to C was
previously set, mark that we need to
repeat on its outgoing edges

Notice now the path to E is about to get
cheaper! (16 versus 17)

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E
16

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

E is the only node that was updated in
the last round, but it doesn’t have any
outgoing edges

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E
16

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

E is the only node that was updated in
the last round, but it doesn’t have any
outgoing edges

All done!

Say we were only interested in the path
between a specific pair of nodes, could
we terminate sooner (A->F)?

Nope L

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E
16

D
8

F
10

A
0

B
4

C
15

11

4

10

14

9

1

23
17

8

E is the only node that was updated in
the last round, but it doesn’t have any
outgoing edges

All done!

Say we were only interested in the path
between a specific pair of nodes, could
we terminate sooner (A->F)?

Nope L

G
0.1

H
0.2

I
0.3

K
0.5

L
0.6

M
0.7

J
0.4

0.1

0.1

0.10.1 0.1
0.1

0.1

0.1

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

E
∞

D
8

F
10

A
0

B
4

C
17

11

4

10

14

9

1

23
17

8

Lets start with node A

Initialize the distance to A as 0, and the
distance everywhere else as infinity

Lets explore all possible paths starting at
A (all outgoing edges from A)

Revise if the total distance we just
traveled is less than the previously
recorded distance (boring this round)

Repeat! … repeat where?

Repeat on all nodes that just had their
distance updated!

Whats wrong with
this algorithm?

Correct but slow, same
edges may be explored
many times O(|V|*|E|)

Simple Shortest Path Algorithm

Given a weighted directed graph, find the
shortest (minimum weight) path from one
start node to one final node.

Lets start with node A

Initialize the distance to A as 0, and the
distance everywhere else as infinity

Lets explore all possible paths starting at
A (all outgoing edges from A)

Revise if the total distance we just
traveled is less than the previously
recorded distance (boring this round)

Repeat! … repeat where?

Repeat on all nodes that just had their
distance updated!

Whats wrong with
this algorithm?

Correct but slow, same
edges may be explored
many times O(|V| * |E|)

D

E

A

B

C
1

1

1

F

GGH

13 5

7 1

1
11

Next Steps
1. Reflect on the magic and power of Sorting!

1. Assignment 9 due on Friday November 30 @ 10pm

