CS 600.226: Data Structures
Michael Schatz

Nov 26,2016
Lecture 34:Advanced Sorting

Assignment 9: StringOmics
Out on: November 16,2018
Due by: November 30, 2018 before 10:00 pm
Collaboration: None
Grading:
Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The ninth assignment focuses on data structures and operations on
strings. In this assighment you will implement encoding and decoding using
the Burrows Wheeler Transform as well as encoding and decoding in a
simple form of run length encoding. In the final problem you will be asked
to measure the space savings using run length encoding with and without
applying the Burrows Wheeler Transform first.

Remember: javac —Xlint:all & checkstyle *.java & Junit
(No JayBee)

Part I: StringOmics Recap

Personal Genomics

How does your genome compare to the reference!

Presidential smile.

Suffix Arrays: Searching the Phone Book

* What if we need to check many queries!?
* We don't need to check every page of the phone book to find 'Schatz’

* Sorting alphabetically lets us immediately skip 96% (25/26) of the book
without any loss in accuracy

* Sorting the genome: Suffix Array (Manber & Myers, 1991)

— Sort every suffix of the genome

Split into n suffixes Sort suffixes alphabetically

[Challenge Question: How else could we split the genome?]

Binary Search Analysis

* Binary Search
Initialize search range to entire list
mid = (hi+lo)/2; middle = suffix[mid]
if query matches middle: done
else if query < middle: pick low range
else if query > middle: pick hi range
Repeat until done or empty range [WHEN?]

* Analysis
* More complicated method
* How many times do we repeat!?

* How many times can it cut the range in half?
* Find smallest x such that: n/(2¥) = |;x = Ig,(n) [32]

* Total Runtime: O(m Ign)
* More complicated, but much faster!
* Looking up a query loops 32 times instead of 3B

[How long does it take to search 6B or 24B nucleotides?]

Exact Matching Review & Overview

Where is GATTACA in the human genome!?

Brute Force Suffix Array Hash Table Suffix Tree
(3 GB) (>15 GB) (>15 GB) (>51 GB)
BANANA

i O~ BN =0 O NULL /,v
BAN S| AS m
£ox
NAN ! | ANANAS $ NA .- s NAS
5 .
4
2

ANA BANANAS$ O»{ANA= 1 O |ANA= 3 O NULL E 3 5
NAS O>{NaN =20 NuLL $/ \NAS

NANA$

O(m * n) O(m +Ig n) O(1) O(m)

Slow & Easy Full-text index Fixed-length lookup Full-text, but bulky

** These are general techniques applicable to any text search problem ***

Burrows-Wheeler Transform

* Reversible permutation of the characters in a text

Rank: 2 Sacaacg
~ aacg$ac

T BWT(T)
cg$acaa ™
g$acaac Rank: 2
Burrows-Wheeler
Matrix BWM(T) LE Property
implicitly encodes
* BWIT(T) is the index for T Suffix Array

A block sorting lossless data compression algorithm.
Burrows M,Wheeler D] (1994) Digital Equibment Corporation. Technical Report 124

o oOoo0owo oD

Burrows-Wheeler Transform

* Recreating T from BWT(T)

— Start in the first row and apply LF repeatedly,
accumulating predecessors along the way

Original T

f_H

g cg acg aacg caacg acaacg
weee=ig $ g $ g S g $ g $ g
a c a c a C a=——»cC, a c

$\ a $ a $ a $ fa S\: $

a\ a a a a a=———»a’ a a a

al\c a ¢ a/’c a c¢ a

a \c a yoeo=—wa’ c a ¢ a ¢ a

c ge———»c’ g c g c g c g c

[Decode this BWT string: ACTGAS$TTA]

Run Length Encoding

ref[614]:

It was the best of times, it was the worst of times, it was the age
of wisdom, it was the age of foolishness, it was the epoch of belief
, 1t was the epoch of incredulity, it was the season of Light, it wa
s _the season of Darkness, it was the spring of hope, it was the wint
er of despair, we had everything before us, we had nothing before us
, we were all going direct to Heaven, we were all going direct the o
ther way - in short, the period was so far like the present period,
that some of its noisiest authorities insisted on its being received

, _for good or for evil, in the superlative degree of comparison only.$

rle(bwt)[464]:

.dlms2ftysesdtrsns y 25 yfofedtg2sfefefg2e2drofr,l2re2f-,fs,9nfrsdn2
hereghetZ2edndete2ge2nste2,s5t,es3ns2f2te2dt10r,4e3feh2 2p 2fpDwlleZh
1l ew 5e02 ne3oa2eo02 4seph2r2hvh2w2egmgh7kr2w2h2s2Hr3vtr2ib2dbcbvs 2t
hw2p3vm2irdn2ib 2eo0l2 4e2n6a2i 3ec2 2t18s_ tsgltsLlvt2 3h2o02re wr2ad2
wlors 9r 2lteiril2re oua2no2i2o0eo04i3hkibo 2ieitsp2ioi 12g2nodsc _s3 g
fhf f3hwh nsmo 2ue2 sio3aed4o02 i2cgp2elaocaeo2e2s2eultetalli 2ei in 2a

2ie_e3rel gaved 614-464 = 150 bytes (24%) with zero loss of information!

Common to save 50% to 90% on real world files with bzip2

BWT Exact Matching

* LFc(r, c) does the same thing as LF(r) but it
isnores r’ s actual final character and
“pretends’ it s c:

LFc(5,9) =8

$acaacg
aacg$ac
acaacgs$
acg$aca
caacg$alg|L

cosacar
Rank<g$ aac ank.

F

BWT Exact Matching

* Start with a range, (top, bot) encompassing all
rows and repeatedly apply LFc:

top = LFc(top, qc); bot = LFc(bot, qc)
gc = the next character to the left in the query

aac aa a

—$ gc, $ g S g S g
a c a c a C __,— c
a $ |\ a $. — $a _——a $
a a |\ a a a -~ a a
c a — aa _—*c¢ aa c a
c a a c a c a
g c ,—g ca g c g c

c—

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000.

[Search for TTA this BWT string: ACTGAS$TTA]

Assembling the first genome

Like Dickens, we must computationally reconstruct a genome from short fragments

de Bruijn Graph Construction

D, = (VE)
* V =All length-k subfragments (k <)

* E = Directed edges between consecutive subfragments
* Nodes overlap by k-1 words

Original Fragment Directed Edge

It was the best of It was the best [was the best of

Locally constructed graph reveals the global sequence structure
* Overlaps between sequences implicitly computed

de Bruijn, 1946
|ldury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

It was the best

N

was the best of

>

de Bruijn Graph Assembly

the best of times,

™~

best of times, it

N, |

of times, it was

it was the worst

~

was the worst of

>

times, it was the

After graph construction,
try to simplify the graph as
much as possible

S

the worst of times,

>SS

worst of times, it

it was the age

the age of foolishness

Sy

was the age of

the age of wisdom,

>SS

age of wisdom, it

S

of wisdom, it was

>

wisdom, it was the

de Bruijn Graph Assembly

It was the best of times, it

v

it was the worst of times, it

of times, it was the

After graph construction,
try to simplify the graph as
much as possible

the age of foolishness

it was the age of

the age of wisdom, it was the

Genetic Associations

® »oen

ey

& C O & oseve sl s s g
MO @l Doy BB v O 0 8 Bvvers L0 Do Bia o o Evere B0 0 ol D) M AT Conmon # Busmnaris

000 0% it v Pe TAAL Catding

Ton g wews @ W S st wh oy v .

vt
EE& e
il W
sl o
il Wil
G
A A
biiadd WA
Ly

ﬁ.ﬁ&m i»E

_ |
M_.___:

D i e A R s B I e I

e

https://www.ebi.ac.uk/gwas/diagram

Part 2: Advanced Sorting

Suffix Array Construction

* How can we store the suffix array?
[How many characters are in all suffixes combined?]

S=14243+--+n=) i=——"=0(n

* Hopeless to explicitly store 4.5 billion billion characters

* Instead use implicit representation 2
* Keep | copy of the genome, and a list of sorted offsets 9
» Storing 3 billion offsets fits on a server (12GB) 2

* Searching the array is very fast, but it takes time to construct !

* This time will be amortized over many, many searches 4

* Run it once "overnight" and save it away for all future queries Il

TGATTACAGATTACC

Quadratic Sorting Algorithms

. - . . .
Selection Sort Bubble Sort Insertion Sort
Move next smallest Swap up bigger Slide next value into
into position values over smaller correct position

Monkey Sort

MonkeySort(int [] input)

foreach p in allPermutations(input) =7 0(n!)
if p is correctly sorted
return p © O(n)

$ tail -f heights.16.log

tree[3393804000000]: 3101646 111821315129 14 7 5 maxheight:
tree[3393805000000]: 3101646 113145987 15 2 12 11 maxheight:
tree[3393806000000]: 3101646 1512158 139 14 2 11 7 maxheight:
tree[3393807000000]: 3101647692 13155 12 11 14 8 1 maxheight:
tree[3393808000000]: 3101647 6 1285119 13 151 2 14 maxheight:
tree[3393809000000]: 3101647 6 141525 1189 12 13 1 maxheight:
tree[3393810000000]: 310164756 1392 11 12 8 14 15 1 maxheight:
tree[3393811000000]: 3101647526 15121 13 9 11 8 14 maxheight:
tree[3393812000000]: 3101647 51386 152 11 14 12 9 1 maxheight:
tree[3393813000000]: 3101647 5156 121189 13 14 2 1 maxheight:

Considering that there are n! possible permutations,
maybe we should be happy with O(n?) time

Nah!

NONONNONNN

Heap Sort

HeapSort(int [] input)
= new MaxHeap()

foreach item in input
h.add(item)

output = new int|[]
while(!h.empty())
output.add(h.max())

In Place Heap Sort (MaxHeap)

Original Array

Heapify

Upheap to fix

Upheap to fix

Convert unsorted array to heap without any extra space in O(n)

8 §) 7 5 3 0 9
N AN ™

8 §) 7 5 3 0 9
N

In Place Heap Sort (MaxHeap)

Starting heap

Swap/remove

Sift down

Swap/remove

AN

9

6

8

5

3

0 7

-

8 §) 7 5 3 0
N
NN

0 8

In Place Heap Sort (MaxHeap)
N

swsrono [0 o [755 o o

N

NN

S N2 3 K3 KA ER EN

NN
3 5 | 7
5 7

swswonos [o [0[5 [7 o [

A

Heap Sort

HeapSort(int [] input) = -
h = new MaxHeap() - .

foreach item in input - .
h.add(item) - ol

output = new int[] » -
while('h.empty()) . -
output.add(h.max()) - .

In-place algorithm, worst-case O(n log n) runtime.
Fast running time and constant upper bound on its auxiliary storage

— Embedded systems with real-time constraints or systems concerned
with security like the linux kernel often use heapsort

While “provably optimal” often outperformed by alternative algorithms
on real world data sets

Merge Sort

Merge these two lists:

ListA:6,7,8 ListB:0,3,5,9

Merge Sort

Merge these two lists:

ListA:6,7,8 ListB:0,3,5,9

T T

List C:

Merge Sort

Merge these two lists:

ListA:6,7,8 ListB:0,3,5,9

T T

List C: 0

Merge Sort

Merge these two lists:

ListA:6,7,8 ListB:0,3,5,9

T T

List C: 0,3

Merge Sort

Merge these two lists:

ListA:6,7,8 ListB:0,3,5,9

T T

List C: 0,3,5

Merge Sort

Merge these two lists:

ListA:6,7,8 ListB:0,3,5,9

T T

List C: 0,3,5,6

Merge Sort

Merge these two lists:

ListA:6,7,8 ListB:0,3,5,9

T T

List C: 0,3,5,6,7

Merge Sort

Merge these two lists:

ListA:6,7,8 ListB:0,3,5,9

T T

List C: 0,3,5,6,7,8

Merge Sort

Merge these two lists:

ListA:6,7,8 ListB:0,3,5,9

T T

List C: 0,3,5,6,7,8,9

Merge Sort

Original Array 8 nn 9
First split 8 ‘ : ‘ 7 3 n 9
Second split T 6 7 5 3 0 9
Third split T ET E E I E

Leaf nodes

First merge

Second merge

Sorted array

Merge Sort

Quicksort

* Selection sort is slow because it rescans the entire list for each element
* How can we split up the unsorted list into independent ranges!?
* Hint I: Binary search splits up the problem into 2 independent ranges (hi/lo)
* Hint 2: Assume we know the median value of a list

AAAANN
MMMMMM

[How many times can we split a list in half?]

QuickSort Analysis

* QuickSort(Input: list of n numbers)

Il see if we can quit s - i .
if (length(list)) <= |): return list -2+ N
- v -

/1 split list into lo & hi r . 2
pivot = median(list) s
lo = {};hi = e (ALY O
for (i = | to length(list)) ol -".

if (list[i] < pivot): append(lo, list[i]) - "

else: append(hi, list[i])

http://en.wikipedia.org/wiki/Quicksort

/| recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

* Analysis (Assume we can find the median in O(n))

O(1) itn <1
T(n):{ O(n) +2T(n/2) else

n

§ywﬂﬁ+-~+%%gi22%:=§:n=0m@m

T(n) =n+ 2(

QuickSort Analysis

* QuickSort(Input: list of n numbers)

Il see if we can quit - - .
if (length(list)) <= I): return list 220 1
- g -

/1 split list into lo & hi . > I
pivot = median(list) 8 it
lo = {}; hi = {}; N . U
for (i = | to length(list)) i i -

if (list[i] < pivot): append(lo, list[i]) " T

else: append(hi, list[i])

http://en.wikipedia.org/wiki/Quicksort

/| recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

* Analysis (Assume we can find the median in O(n))

0(1) ifn <1
Tn) = { O(n)+2T(n/2) else

T(n):n+2(g)+4(%)+---—l—n(%): Z 5 = Zn:()(nlgn)

Picking the Median

* What if we miss the median and do a 90/10 split instead?

n

n/10 + 9n/10
S 4810100
[T] =] +729n/1000

i = Es— T

LT = .. +59049n/100000

.. +531441n/1000000

... + 4782969n/10000000

HEEN ...+ 9n/10

[How many times can we cut 10% off a list?]

Randomized Quicksort

* 90/10 split runtime analysis Find smallest x s.t.
T(n) =0+ T(35) + T(50) (9/10)n < 1
T(”):n+%+T(%)+T(%)+%+T(%)+T(%) (10/9)* > n
T(n) = n+n+T(%) +2T(%) +T(%) > logyg/om

logy/9(n)

T(n) = Z n = 0(nlgn)

1=0

* If we randomly pick a pivot, we will get at least a 90/10
split with very high probability
— If picking randomly is expensive, choose the median of 3 items, or median on
N items (Ninther) or find overall median without sorting
* The more time spent picking the pivot, the higher the constants will be

— Everything is okay as long as we always slice off a fraction of the list

[Challenge Question:What happens if we slice | element]

QuickSelect

How can we find the median in O(n)?

Il Returns the k-th smallest element of list within left..right inclusive
/I partition() arranges the data between left and right if it is less than or greater than the pivot
function select(list, left, right, k)
if left == right /' If the list contains only one element,
return list[left] // return that element
pivotindex :=.. // select a pivotlndex between left and right,
Il e.g., left + floor(rand() % (right - left + 1))
pivotindex := partition(list, left, right, pivotlndex)
// The pivot is in its final sorted position Pivotis 1
if k == pivotlndex
return list[k] = R
else if k < pivotindex Pivot is 2

Array in consideration

return select(list, left, pivotindex - 1, k)

Pivotis 5

else
return select(list, pivotlndex + [, right, k)

Pivot is 3

Finds median in O(n) expected time

QuickSort in Java

Arrays.sort ()

The goal of software engineering is to build libraries of
correct reusable functions that implement higher level
ideas

— Build complex software out of simple components

— Software tends to be 90% plumbing, 10% novel work

— You still need to know how they work

* Java requires an explicit representation of the strings

BER Damaumanrent -
L T e e

java.util.Arrays

R e R e B & L]

MG B Dty BN v OO N B LG8 Do Wi Do e Divess B 11 e NYT Cannnt - Beenata

ey Clans st Clans Frwrwn o Freves

| Bty il | Pt | Gl | et Detet Fatd | G | Mot

e s

Class Arrays

s g Ot

P M Aves

pbile sliass Arvers
Satende O et

Thae Cana Cortara s Pelds W Sapaing B0y | Ral At s trg and e teny) T Caes B Gortew 8 S0 ity Tl Bhves e e) e veeed a4 i

The e ods © Pun Cess o Brow & BP0l artaept 2on, ¥ e specied sy whronce B nt secect whars noed

The soouseriaton Yy e meiod cordeved B B Omse Foiutes brels dmorpior of e mpdeemectstiorn Sk descrphors Vo Yo regarted e
PP TR 4G O Ve 2

et

» e

Tha cues & & monter o B Jeve Colections Pamemeort.

Birve
12

Mathod Summary

MoSter 308 Troe
Matie T ListeTr

erenir

elanle

LR R

sanie

latie

“ranin

L

i

Wetnod end Descripton

lA T W

Mt o Pawdace Wl deant by Pw sefend wrey

BLaarytearchibytel | o, Brte ey

Searten Pe ioecfed wrey of Sylen bor e 10e0Red wEUe LN e NN TN SO
Blasrploareh byta| | &, LA Teualaden, st talndes, Mie hey)

SearTen 3 wrgo F Tw wpected acvwy o Dyt T T8 I00CEE0 vas A0 G Te LOary BT Mgoraet
SlaarpBasenhiohar(] o, et ey

Beer Tws To dpun Sand wiwy oF Dk K D agmmiliand varsn i) Pa leviry sanh sps ®o
biserptasrohictar]) s, iar fromindex, iot toladen, char dey)

Baertten 4 wQe of P soected sy o ey b P soecfed s g P Drery 3t gigoethe
Binsarytaarch i doudiel | o, doubie by)

Sewcren te weched smey of Joutses Ty Pe wecled vRwe g P Dowy Mk Bgorit
BlaaspBoaishdedinl | o, ot Toealaden, AL tOIndes, Soubis Wyl

ST 3 RGeS D Wl 2y O QOLes KA Teb G ADE wah MG T Sy M B
Sisarpbaareh (Fiont] o, flown byl

Ttar P P pm Samd wrwy o Toain be T apem Lad wwim inryg Pa brdry snan wng e e
Blasrytesrehifiont || oo Lot framisder, inr woindes, flown Way)

Soaerthen 8 arge of Pa specfied srwy of fosts % Be wpecfed veue sarg P brery seeh sgo it

A OO0 WM

plommedator fofen. Wher P Dty of Pa peoficston Fpiereeon SO fee See b sbeitule ofer
WP, TN SOONEWN S By e h (08 Deid 1 1) S0 008 Dive 10 B0 4 Verpedion a2 1 30es N 10 De atabee |

java.lang Interface Comparable<T>

B0 D corvenon umaPurnen v ol
- C O 0 "rus 0min reths 09 e rean T nnn i Jeen ey Tl whan s e 00 N “~08 |

'
MG ooy B Y OUN Bvvewe L5 mew s Do 0w Divess BSed o 0 Seve VYT Commt & Sasate 2] Ove Bmerens

Py Claas Nuw Cloas Fowrws Mo P =
By Sl | Fant | Caralr | Metd Detet Fatd | G | Mot

Trve Paravmtors
T - P Yoo of Sojec Pat Na otyect My e compered
Al Kncwn Scbirtarfeces:
Dwspad Nerw, Pat. Rruatsborecsed 2wy Sredtmd Arvevs
Al Mncen Inpemerneg Cluties
FuctCortest Cacenkooe, Accwudioon. Alanyt wg, AL Pwrmmmr, ALy 1o, A F watse e Aumentcacy Foscuion Type, Bglecmet, grosge:. Boomen. Byte, By, Cawnow

AT T O b
Dungrostc mnd, Duog Mooel achmn T pe. Owcg VWodary Trce, Do, Dosswbfe Crghiocs Carmerdiod, LerwstTpa, Coum Fre, e Tma Frevesipten, Fawveciess, Fos, Vosth e Fovane Bglecrmel smyosf o,

public imterface Comparsble«ts
Ths rasdece mpcues 8 i crdereg on e oHiects of eech Cst Pt oETents £ Thie 0rdoreg B wAernd 10 B8 e CHaE Aty 0rIenng. nd e SRS Soepale T Meod i ied © 38 B fetee Comperton method

Lt (e vy) of stgecins Pl vgumseed s rmfince e Be soried sutomwinsty By Lol Lact lons sars (el Arrayw st) Olgects Il sopersend Bon st 0on e uned o bmrs 0 8 soriel Sag o a0 e 1 8 il sl ot P ceed o speoly &
(A b

Tha neture’ orderng 0f @ Came € & S 10 20 commaiony e agues § and orvy el conpaee®a (al) == § has P aarme Doooen rtn 8 oL ogualeial) Ry evary o) and ol of Ceme € Note Bt pall B 00t an Eatenos oF ety S e & conpareTecaell)
Wousd Prow & el LvinterBecept Lon oven Pough e equals (eail) Wi false

B0 wrongy ecorrsersied ough st seoueed. Pal Setsw orderegn be corsisiort wilh 0ues. THE 8 50 becsuse yoried sets and soried mape, e eaprat comparrs Deteve “shengely” hen Pary w vaed afh seres o Meye) whoRe Tew ordereg B
FOGa o GG ¥\ pTOAN N B NI B | G e P gun O 0 100 Mg, whih Selned I e OF T sged L mathoo

For aummgen, 1 o0 00 W0 S0y & 40 B ouch I (LA oQuasn (] o8 S.0parete(B] *= 1) 108 20med Mol Tt S0 Not U AN it COMDETEDE. T MCONG S04 DOUENOT R e (g S wan of B sored et S0ue TR POTREe | Secaase & 00d B W
vt Yo Be sorted sy Jerroectve

Virtaly ol Jave oM Caness Tl IVOMMSOT Comgar able NV MRS COOMIO0E TWl SN CONMEINTT i 0NN One EROapOON & Jeve Seil, B g0ed el SN0 NELAE DAORTY GO B Le0wd Like L ODICIE Wil S0 VINE W0 OMRT DIOCIRON (e & 4 0

- 400

R v Ta VA St T AL ARG O b pven s C -
{im y) such that x,compazeToly) == §).

The puotand S P AN arder =

4%, ¥) ssch Lhar xX.00apareTaiy) == &)

1 A0wn rTmedwtony
oeng A Pe

Advance Sorting Review

Heap Sort Merge Sort QuickSort
Add everything to a heap, Divide input into n lists, Recursively partition
remove from biggest to merge pairs of sorted input into low/high based
smallest lists as a tree on a pivot
O(n Ig n) worst case O(n Ig n) worst case O(n?) worse case,

O(n Ig n) typical
Big constants O(n) space overhead Very fast in practice

Part 3: Really Advanced Sorting

I Decision Tree of Searching

How many comparisons are made to binary search in an array with 3 items?

Decision Tree of Sorting

Notice that sorting 3 items (a,b,c) may have 3! = 6 possible permutations

a<b<c
a<c<b
b<a<c
b<c<a
c<a<b
c<b<a

Initially we don’t know which one of these permutations is the correctly sorted version,
but we can make pairwise comparisons to figure it out

[ali] < a[j] }
[a[k] < ali] J [a[k] < ali] }

In the worst case, how many comparisons are needed!?

Decision Tree of Sorting

.
a>b

?b7?

-

a<b

)
A
©
V R
) lo)
?.
©
V — O
= O
\V/
©
)
S V
© o
| S—
)
A
©
V
V
O % | N—
A &)
) g S
) ©
?. \)
o v
V — @©
© O
| S— \V/
o
)
Y V

Decision Tree of Sorting

e

a<b a>b
[a<b’?c} [b<a’?c]
b>c
a<b c<b J [b<a c<a

s Sn i S

Decision Tree of Sorting

lg(n!) =1Ig(n * (n-1) *(n-2) * ... *2* 1)
lg(n!) = Ig(n) + Ig(n-1) + Ig(n-2) + ... +1g(2) + Ig(1)
Ig(n!) =Ig(n) + Ig(n) +Ig(n) + ... +1g(n) + Ig(n)

= logn+log(n—1)+log(n—2)+---+log2

= Zlogz'

1=2

n/2-1 n
= Z logi + z log i

=2 i=n/2
> 0+ Z Iogg

i=n/2 i *

= 5-logg Because Ig grows so slowly,
= Q(nlogn) Just sum from n/2 to n

Next Steps

|. Reflect on the magic and power of Sorting!

|. Assignment 9 due on Friday November 30 @ 10pm

