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Michael Schatz

Nov 26, 2016
Lecture 34: Advanced Sorting



Assignment 9: StringOmics
Out on: November 16, 2018
Due by: November 30, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The ninth assignment focuses on data structures and operations on 
strings. In this assignment you will implement encoding and decoding using 
the Burrows Wheeler Transform as well as encoding and decoding in a 
simple form of run length encoding. In the final problem you will be asked 
to measure the space savings using run length encoding with and without 
applying the Burrows Wheeler Transform first.

Remember: javac –Xlint:all & checkstyle *.java & Junit
(No JayBee)



Part 1: StringOmics Recap



Personal Genomics
How does your genome compare to the reference?

Heart Disease

Cancer

Presidential smile



Suffix Arrays: Searching the Phone Book
• What if we need to check many queries?

• We don't need to check every page of the phone book to find 'Schatz'
• Sorting alphabetically lets us immediately skip 96% (25/26) of the book 

without any loss in accuracy

• Sorting the genome: Suffix Array (Manber & Myers, 1991)
– Sort every suffix of the genome

Split into n suffixes Sort suffixes alphabetically

[Challenge Question: How else could we split the genome?]



Binary Search Analysis
• Binary Search

Initialize search range to entire list 
mid = (hi+lo)/2; middle = suffix[mid]
if query matches middle: done
else if query < middle: pick low range
else if query > middle: pick hi range

Repeat until done or empty range [WHEN?]

• Analysis
• More complicated method
• How many times do we repeat?

• How many times can it cut the range in half?
• Find smallest x such that: n/(2x) ≤ 1; x = lg2(n) [32]

• Total Runtime: O(m lg n)
• More complicated, but much faster!
• Looking up a query loops 32 times instead of 3B

[How long does it take to search 6B or 24B nucleotides?]



Exact Matching Review & Overview
Where is GATTACA in the human genome?

Hash Table     
(>15 GB) 

O(m)

Full-text, but bulky

Suffix Tree
(>51 GB) 

O(m + lg n)

Full-text index

Suffix Array    
(>15 GB)

Brute Force
(3 GB)

O(m * n)

Slow & Easy

BANANA
BAN
ANA
NAN
ANA

***  These are general techniques applicable to any text search problem ***

O(1)

Fixed-length lookup



Burrows-Wheeler Transform

• Reversible permutation of the characters in a text

• BWT(T) is the index for T

Burrows-Wheeler
Matrix BWM(T)

BWT(T)T

A block sorting lossless data compression algorithm.
Burrows M, Wheeler DJ (1994) Digital Equipment Corporation. Technical Report 124

Rank: 2

Rank: 2

LF Property 
implicitly encodes
Suffix Array



Burrows-Wheeler Transform

• Recreating T from BWT(T)
– Start in the first row and apply LF repeatedly, 

accumulating predecessors along the way

Original T

[Decode this BWT string: ACTGA$TTA ]



Run Length Encoding

rle(bwt)[464]:
.dlms2ftysesdtrsns_y_2$_yfofe4tg2sfefefg2e2drofr,l2re2f-,fs,9nfrsdn2
hereghet2edndete2ge2nste2,s5t,es3ns2f2te2dt10r,4e3feh2_2p_2fpDw11e2h
l_ew_5eo2_ne3oa2eo2_4seph2r2hvh2w2egmgh7kr2w2h2s2Hr3vtr2ib2dbcbvs_2t
hw2p3vm2irdn2ib_2eo12_4e2n6a2i_3ec2_2t18s_tsgltsLlvt2_3h2o2re_wr2ad2
wlors_9r_2lteiril2re_oua2no2i2oeo4i3hki6o_2ieitsp2ioi_12g2nodsc_s3_g
fhf_f3hwh_nsmo_2ue2_sio3ae4o2_i2cgp2e2aoaeo2e2s2eu2teta11i_2ei_in_2a
2ie_e3rei_hrs3nac2i2Ii7sn_15oyoui_2a_i3ds_2ai2ae2_21tlar

ref[614]:
It_was_the_best_of_times,_it_was_the_worst_of_times,_it_was_the_age_
of_wisdom,_it_was_the_age_of_foolishness,_it_was_the_epoch_of_belief
,_it_was_the_epoch_of_incredulity,_it_was_the_season_of_Light,_it_wa
s_the_season_of_Darkness,_it_was_the_spring_of_hope,_it_was_the_wint
er_of_despair,_we_had_everything_before_us,_we_had_nothing_before_us
,_we_were_all_going_direct_to_Heaven,_we_were_all_going_direct_the_o
ther_way_-_in_short,_the_period_was_so_far_like_the_present_period,_
that_some_of_its_noisiest_authorities_insisted_on_its_being_received
,_for_good_or_for_evil,_in_the_superlative_degree_of_comparison_only.$

Saved 614-464 = 150 bytes (24%) with zero loss of information!
Common to save 50% to 90% on real world files with bzip2



BWT Exact Matching
• LFc(r, c) does the same thing as LF(r) but it 

ignores r�s actual final character and 
�pretends� it�s c:

Rank: 2Rank: 2

L

F

LFc(5, g) = 8

g



BWT Exact Matching
• Start with a range, (top, bot) encompassing all 

rows and repeatedly apply LFc:
top = LFc(top, qc); bot = LFc(bot, qc)
qc = the next character to the left in the query

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000.

[Search for TTA this BWT string: ACTGA$TTA ]



Assembling the first genome

Like Dickens, we must computationally reconstruct a genome from short fragments



de Bruijn Graph Construction

• Dk = (V,E)
• V = All length-k subfragments (k < l)
• E = Directed edges between consecutive subfragments

• Nodes overlap by k-1 words

• Locally constructed graph reveals the global sequence structure
• Overlaps between sequences implicitly computed

It was the best was the best ofIt was the best of 

Original Fragment Directed Edge

de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001



de Bruijn Graph Assembly

the age of foolishness

It was the best 

best of times, it

was the best of

the best of times,

of times, it was

times, it was the

it was the worst

was the worst of

worst of times, it

the worst of times,

it was the age

was the age of
the age of wisdom,

age of wisdom, it

of wisdom, it was

wisdom, it was the

After graph construction, 
try to simplify the graph as 

much as possible



de Bruijn Graph Assembly

the age of foolishness

It was the best of times, it

of times, it was the

it was the worst of times, it

it was the age of
the age of wisdom, it was theAfter graph construction, 

try to simplify the graph as 
much as possible



Genetic Associations

https://www.ebi.ac.uk/gwas/diagram



Part 2: Advanced Sorting



Suffix Array Construction
• How can we store the suffix array?

[How many characters are in all suffixes combined?]

S = 1 + 2 + 3 + · · ·+ n =
nX

i=1

i =
n(n+ 1)

2
= O(n2)

Pos

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

TGATTACAGATTACC

• Hopeless to explicitly store 4.5 billion billion characters

• Instead use implicit representation
• Keep 1 copy of the genome, and a list of sorted offsets
• Storing 3 billion offsets fits on a server (12GB)

• Searching the array is very fast, but it takes time to construct
• This time will be amortized over many, many searches
• Run it once "overnight" and save it away for all future queries 



Quadratic Sorting Algorithms

Insertion Sort
Slide next value into 

correct position

Bubble Sort
Swap up bigger 

values over smaller

Selection Sort
Move next smallest 

into position

Asymptotically all three have the same performance: O(n2)

Can you do any better than this?



Monkey Sort
MonkeySort(int [] input)

foreach p in allPermutations(input)
if p is correctly sorted

return p J O(n)
!

O(n!)

$ tail -f heights.16.log
tree[3393804000000]: 3 10 16 4 6 1 11 8 2 13 15 12 9 14 7 5 maxheight: 7
tree[3393805000000]: 3 10 16 4 6 1 13 14 5 9 8 7 15 2 12 11 maxheight: 7
tree[3393806000000]: 3 10 16 4 6 1 5 12 15 8 13 9 14 2 11 7 maxheight: 7
tree[3393807000000]: 3 10 16 4 7 6 9 2 13 15 5 12 11 14 8 1 maxheight: 6
tree[3393808000000]: 3 10 16 4 7 6 12 8 5 11 9 13 15 1 2 14 maxheight: 7
tree[3393809000000]: 3 10 16 4 7 6 14 15 2 5 11 8 9 12 13 1 maxheight: 7
tree[3393810000000]: 3 10 16 4 7 5 6 13 9 2 11 12 8 14 15 1 maxheight: 6
tree[3393811000000]: 3 10 16 4 7 5 2 6 15 12 1 13 9 11 8 14 maxheight: 7
tree[3393812000000]: 3 10 16 4 7 5 13 8 6 15 2 11 14 12 9 1 maxheight: 6
tree[3393813000000]: 3 10 16 4 7 5 15 6 12 11 8 9 13 14 2 1 maxheight: 7

…

Considering that there are n! possible permutations, 
maybe we should be happy with O(n2) time

Nah!



Heap Sort

HeapSort(int [] input)
h  = new MaxHeap()
foreach item in input

h.add(item)

output = new int[]
while(!h.empty())

output.add(h.max())

J O(n lg n)

Improved selection sort:

Divide the input into sorted and unsorted regions, then iteratively
shrink the unsorted region by extracting the smallest/largest
element. Use a heap rather than a linear-time search to find the
min/max in O(lg n) time instead of O(n) time.

Yields an overall O(n lg n) runtime J

Invented by J. W. J. Williams in 1964

J O(n lg n)



In Place Heap Sort (MaxHeap)

8 6 7 5 3 0 9Original Array

8 6 7 5 3 0 9Heapify

8 6 9 5 3 0 7Upheap to fix

9 6 8 5 3 0 7Upheap to fix

Convert unsorted array to heap without any extra space in O(n)



In Place Heap Sort (MaxHeap)

9 6 8 5 3 0 7Starting heap

7 6 8 5 3 0 9Swap/remove

8 6 7 5 3 0 9Sift down

0 6 7 5 3 8 9Swap/remove



In Place Heap Sort (MaxHeap)

0 6 7 5 3 8 9Swap/remove

7 6 0 5 3 8 9Sift down

3 6 0 5 7 8 9Swap/remove

0 3 5 6 7 8 9Final

…

J O(n lg n) => Provably optimal performance



Heap Sort

HeapSort(int [] input)
h  = new MaxHeap()
foreach item in input

h.add(item)

output = new int[]
while(!h.empty())

output.add(h.max())

In-place algorithm, worst-case O(n log n) runtime.

Fast running time and constant upper bound on its auxiliary storage
Þ Embedded systems with real-time constraints or systems concerned

with security like the linux kernel often use heapsort

While “provably optimal” often outperformed by alternative algorithms 
on real world data sets



Merge Sort
Uses the powerful divide-and-conquer recursive strategy

Key idea: Merging two sorted lists into a new sorted list is easy

Merge these two lists:

List A: 6, 7, 8    List B: 0, 3, 5, 9



Merge Sort
Uses the powerful divide-and-conquer recursive strategy

Key idea: Merging two sorted lists into a new sorted list is easy

Merge these two lists:

List A: 6, 7, 8    List B: 0, 3, 5, 9

List C:



Merge Sort
Uses the powerful divide-and-conquer recursive strategy

Key idea: Merging two sorted lists into a new sorted list is easy

Merge these two lists:

List A: 6, 7, 8    List B: 0, 3, 5, 9

List C: 0



Merge Sort
Uses the powerful divide-and-conquer recursive strategy

Key idea: Merging two sorted lists into a new sorted list is easy

Merge these two lists:

List A: 6, 7, 8    List B: 0, 3, 5, 9

List C: 0,3



Merge Sort
Uses the powerful divide-and-conquer recursive strategy

Key idea: Merging two sorted lists into a new sorted list is easy

Merge these two lists:

List A: 6, 7, 8    List B: 0, 3, 5, 9

List C: 0,3,5



Merge Sort
Uses the powerful divide-and-conquer recursive strategy

Key idea: Merging two sorted lists into a new sorted list is easy

Merge these two lists:

List A: 6, 7, 8    List B: 0, 3, 5, 9

List C: 0,3,5,6



Merge Sort
Uses the powerful divide-and-conquer recursive strategy

Key idea: Merging two sorted lists into a new sorted list is easy

Merge these two lists:

List A: 6, 7, 8    List B: 0, 3, 5, 9

List C: 0,3,5,6,7



Merge Sort
Uses the powerful divide-and-conquer recursive strategy

Key idea: Merging two sorted lists into a new sorted list is easy

Merge these two lists:

List A: 6, 7, 8    List B: 0, 3, 5, 9

List C: 0,3,5,6,7,8



Merge Sort
Uses the powerful divide-and-conquer recursive strategy

Key idea: Merging two sorted lists into a new sorted list is easy

Merge these two lists:

List A: 6, 7, 8    List B: 0, 3, 5, 9

List C: 0,3,5,6,7,8,9

Merge two sorted lists in linear time
O(sum of the length of the individual lists) J

Where do these sorted lists come from?



Merge Sort
Uses the powerful divide-and-conquer recursive strategy

8 6 7 5 3 0 9Original Array

8 6 7 5 3 0 9First split

8 6 7 5 3 0 9Second split

8 6 7 5 3 0 9Third split

How many times can we split an array of length n?

After O(lg n) splits, have n lists each 1 element long 
that are each trivially sorted

In practice, just start with n lists of 1 element J



Merge Sort
Uses the powerful divide-and-conquer recursive strategy

0 3 5 6 7 8 9Sorted array

6 7 8 0 3 5 9Second merge

8 6 7 3 5 0 9First merge

8 6 7 5 3 0 9Leaf nodes

After O(lg n) merges the entire array will be sorted

Very popular external sorting algorithm (huge data sets on disk) but less 
popular because it requires O(n) extra memory



Quicksort
• Selection sort is slow because it rescans the entire list for each element

• How can we split up the unsorted list into independent ranges?
• Hint 1:  Binary search splits up the problem into 2 independent ranges (hi/lo)
• Hint 2:  Assume we know the median value of a list

n

[How many times can we split a list in half?]

=< > 2 x n/2

=< > = =< > 4 x n/4

< = > = < = > = < = > = < = > 8 x n/8

16 x n/16

2i x n/2i



QuickSort Analysis
• QuickSort(Input: list of n numbers)

// see if we can quit
if (length(list)) <= 1): return list

// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = 1 to length(list))

if (list[i] < pivot): append(lo, list[i])
else: append(hi, list[i])

// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

• Analysis (Assume we can find the median in O(n))

[~94B]

http://en.wikipedia.org/wiki/Quicksort

T (n) =

⇢
O(1) if n  1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)X

i=0

2in

2i
=

lg(n)X

i=0

n = O(n lg n)



QuickSort Analysis
• QuickSort(Input: list of n numbers)

// see if we can quit
if (length(list)) <= 1): return list

// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = 1 to length(list))

if (list[i] < pivot): append(lo, list[i])
else: append(hi, list[i])

// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

• Analysis (Assume we can find the median in O(n))

http://en.wikipedia.org/wiki/Quicksort

T (n) =

⇢
O(1) if n  1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)X

i=0

2in

2i
=

lg(n)X

i=0

n = O(n lg n)



Picking the Median
• What if we miss the median and do a 90/10 split instead?

n

[How many times can we cut 10% off a list?]

…+ 9in/10i

n/10 + 9n/10 < = >

... + 81n/100< = >

< = … + 6561n/10000>

< = > ... + 729n/1000

< = > … + 59049n/100000

< = > … + 531441n/1000000

< = > … + 4782969n/10000000



Randomized Quicksort
• 90/10 split runtime analysis

• If we randomly pick a pivot, we will get at least a 90/10 
split with very high probability
– If picking randomly is expensive, choose the median of 3 items, or median on 

N items (Ninther) or find overall median without sorting 
• The more time spent picking the pivot, the higher the constants will be

– Everything is okay as long as we always slice off a fraction of the list

[Challenge Question: What happens if we slice 1 element]

(9/10)xn  1

(10/9)x � n

x � log10/9 n

Find smallest x s.t.

T (n) = n+ T (
n

10
) + T (

9n

10
)

T (n) = n+
n

10
+ T (

n

100
) + T (

9n

100
) +

9n

10
+ T (

9n

100
) + T (

81n

100
)

T (n) = n+ n+ T (
n

100
) + 2T (

9n

100
) + T (

81n

100
)

T (n) =

log10/9(n)X

i=0

n = O(n lg n)



QuickSelect
How can we find the median in O(n)?

// Returns the k-th smallest element of list within left..right inclusive
// partition() arranges the data between left and right if it is less than or greater than the pivot
function select(list, left, right, k)

if left == right // If the list contains only one element,
return list[left] // return that element

pivotIndex := ... // select a pivotIndex between left and right,
// e.g., left + floor(rand() % (right - left + 1))

pivotIndex := partition(list, left, right, pivotIndex)
// The pivot is in its final sorted position
if k == pivotIndex
return list[k]

else if k < pivotIndex
return select(list, left, pivotIndex - 1, k)

else
return select(list, pivotIndex + 1, right, k)

Finds median in O(n) expected time



QuickSort in Java

Arrays.sort()

The goal of software engineering is to build libraries of 
correct reusable functions that implement higher level 
ideas
– Build complex software out of simple components
– Software tends to be 90% plumbing, 10% novel work
– You still need to know how they work

• Java requires an explicit representation of the strings



java.util.Arrays

Fast sorting for objects that implement the Comparable interface



java.lang Interface Comparable<T>

Make sure your object implements comparesTo(other)
<0: Im less than other; 0: Im equal to other; >0: Im greater than other 



Advance Sorting Review

Heap Sort

Add everything to a heap, 
remove from biggest to 

smallest

O(n lg n) worst case

Big constants

Merge Sort

Divide input into n lists, 
merge pairs of sorted 

lists as a tree

O(n lg n) worst case

O(n) space overhead

QuickSort

Recursively partition 
input into low/high based 

on a pivot

O(n2) worse case, 
O(n lg n) typical

Very fast in practice



Part 3: Really Advanced Sorting



Decision Tree of Searching
How many comparisons are made to binary search in an array with 3 items?

arr

0 1 2

x y z

k < y

k < x k < z

yes no

k < x x ≤ k < y y ≤ k < z z ≤ k

yes no noyes

The decision tree encodes the execution over all possible input values
The decision tree is a binary tree, each node encodes exactly 1 comparison

The decision tree for searching has n+1 leaf nodes (since there are n+1 “slots” for k)

Searching by comparisons requires at least O(lg n) comparisons (lower bound)



Decision Tree of Sorting
Notice that sorting 3 items (a,b,c) may have 3! = 6 possible permutations

a < b < c
a < c < b
b < a < c
b < c < a
c < a < b
c < b < a

Initially we don’t know which one of these permutations is the correctly sorted version, 
but we can make pairwise comparisons to figure it out

a[i] < a[j]

a[k] < a[i] a[k] < a[i]

yes no

In the worst case, how many comparisons are needed?



Decision Tree of Sorting

a ? b ? c

a < b ? c b < a ? c

a<b a>b

a < b < c a<b, c<b

b<c b>c

b < a < c b<a, c<a

a<c a>c

a < c < b

a<c

c < a < b

a>c

b < c < a

b<c

c < b < a

b>c



Decision Tree of Sorting

a ? b ? c

a < b ? c b < a ? c

a<b a>b

a < b < c a<b, c<b

b<c b>c

a < c < b

a<c

c < a < b

a>c

b < a < c b<a, c<a

a<c a>c

b < c < a

b<c

c < b < a

b>c

Notice that we have all 3! = 6 possibilities as leaf nodes

How tall is a tree with n! leaf nodes?

O(lg n!) whattt???
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Decision Tree of Sorting
What is O(lg n!)

lg(n!) = lg(n * (n-1) * (n-2) * … * 2 * 1)

lg(n!) = lg(n) + lg(n-1) + lg(n-2) + … + lg(2) + lg(1)

lg(n!) ≤ lg(n) + lg(n) + lg(n) + … + lg(n) + lg(n)

lg(n!) ≤ n lg n

This is true, but the wrong direction to prove a lower bound. 
Need to show lg(n!) ≥ something instead

Because lg grows so slowly, 
Just sum from n/2 to n

*Any* comparison based sorting algorithm requires at least O(n lg n)

n/2

lg
(n

/2
)



Next Steps
1. Reflect on the magic and power of Sorting!

1. Assignment 9 due on Friday November 30 @ 10pm


