CS 600.226: Data Structures
Michael Schatz

Nov 14,2016
Lecture 32: BWT

HW8

Assignment 8: Competitive Spelling Bee
Out on: November 2,2018
Due by: November 9,2018 before 10:00 pm
Collaboration: None
Grading:
Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 30% (where applicable),
Functionality 40% (where applicable)

Overview

Your "one" task for this assignment is to take the simple spell checker we
give you and to turn it into the fastest, most memory-efficient spell
checker in the course, subject to the constraints detailed below.You are
expected to do this by (once again) implementing the Map interface, this
time using one of several hash table techniques (your choice, see below).

Remember: javac —Xlint:all & checkstyle *.java
& Junit & Jaybee BenchMarks

Part |: Suffix Arrays

Personal Genomics

How does your genome compare to the reference!

Presidential smile.

Brute Force Analysis

* Brute Force:

— At every possible offset in the genome:
* Do all of the characters of the query match?

* Analysis
— Simple, easy to understand
— Genome length = n [3B]
— Query length =m [7°
— Comparisons: (n-m+1) * m [21B]

* Overall runtime: O(nm)
[How long would it take if we double the genome size, read length?]
[How long would it take if we double both?]

Brute Force Reflections

Why check every position!?
— GATTACA can't possibly start at position |5 [WHY?]

1203 45 67 8 9 101 2[1314].

T G AT T A C A G A T T A C C
G A T T A C A

— Improve runtime to O(n + m) [3B + 7]

* If we double both, it just takes twice as long
e Knuth-Morris-Pratt, 1977
* Boyer-Moyer, 1977, 1991

— For one-off scans, this is the best we can do (optimal performance)
* We have to read every character of the genome, and every character of the query
* For short queries, runtime is dominated by the length of the genome

Suffix Arrays: Searching the Phone Book

* What if we need to check many queries!?
* We don't need to check every page of the phone book to find 'Schatz’

* Sorting alphabetically lets us immediately skip 96% (25/26) of the book
without any loss in accuracy

* Sorting the genome: Suffix Array (Manber & Myers, 1991)

— Sort every suffix of the genome

Split into n suffixes Sort suffixes alphabetically

[Challenge Question: How else could we split the genome?]

Searching the Index

* Strategy 2: Binary search

Compare to the middle, refine as higher or lower

Searching for GATTACA

Lo =I;Hi=15;

Lo
6

Sequence

ACAGATTACC...

ACC...

AGATTACC...

ATTACAGATTACC...

ATTACC...

C...

CAGATTACC...

CC...

W|loo|N|]ocojun | AM]|JW| DN

GATTACAGATTACC...

)

GATTACC...

TACAGATTACC...

o

TACC...

w

TGATTACAGATTACC...

N

TTACAGATTACC...

(0,

TTACC...

Searching the Index
* Strategy 2: Binary search

* Compare to the middle, refine as higher or lower

Lo # Sequence Pos

+ Searching for GATTACA ™ |1 | AcacaTTACC... 6
« Lo=1;Hi=1I5Mid=(1+15)/2=8 2 | ACC... 13
* Middle = Suffix[8] = CC j 2?::;222.%%(; :

5| ATTACC... 10
6| C... |5
7 | CAGATTACC... 7
8| cc... 14
9 | GATTACAGATTACC... 2
10 | GATTACC... 9
Il | TACAGATTACC... 5
12 | TACC... 12
13 | TGATTACAGATTACC... I
14 | TTACAGATTACC... 4
Hi [15[T7Acc... ¥
_>

Searching the Index
* Strategy 2: Binary search

* Compare to the middle, refine as higher or lower

Lo # Sequence Pos

+ Searching for GATTACA ™ |1 | AcacaTTACC... 6
« Lo=1;Hi=1I5Mid=(1+15)/2=8 2 | ACC... 13
« Middle = Suffix[8] = CC 3 | AGATTACC... 8
=> Higher: Lo = Mid + | : ﬁiizZ‘GATTACC--- To
6| C... |5

7 | CAGATTACC... 7
8| cc... 14

9 | GATTACAGATTACC... 2

10 | GATTACC... 9

Il | TACAGATTACC... 5
12 | TACC... 12

I3 | TGATTACAGATTACC... |

14 | TTACAGATTACC... 4

Hi [s]rmace.. X

Searching the Index
* Strategy 2: Binary search

* Compare to the middle, refine as higher or lower

Sequence

* Searching for GATTACA
* Lo=1I;Hi=15Mid=(1+15)/2=8
* Middle = Suffix[8] = CC
=> Higher: Lo = Mid + |

e Lo=9;Hi=15;

™ | 9| caTTACAGATTACC... |2
10 | GATTACC... 9
11 | TACAGATTACC... 5
12 | TACC... 12
13 | TGATTACAGATTACC... | I
14 | TTACAGATTACC... 4
|‘_|I> 15 | TTACC... I

Searching the Index
* Strategy 2: Binary search

* Compare to the middle, refine as higher or lower

Sequence

* Searching for GATTACA
* Lo=1;Hi=15Mid=(I+15)/2=8
* Middle = Suffix[8] = CC
=> Higher: Lo = Mid + |

Lo =9;Hi=I5Mid = (9+15)/2 = 12
- Middle = Suffix[12] = TACC

™ | 9| caTTACAGATTACC... |2
10 | GATTACC... 9
11 | TACAGATTACC... 5
12 | TAacC... 12
13 | TGATTACAGATTACC... | I
14 | TTACAGATTACC... 4
|‘_|I> 15 | TTACC... I

Searching the Index

Strategy 2: Binary search

Compare to the middle, refine as higher or lower

Searching for GATTACA

Lo = I;Hi=15;Mid = (I1+15)/2 =8
Middle = Suffix[8] = CC
=> Higher: Lo = Mid + |

Lo = 9;Hi = 15;Mid = (9+15)/2 = 12
Middle = Suffix[12] = TACC
=> Lower: Hi = Mid - |

Lo=9;Hi=11;

#

Sequence

GATTACAGATTACC...

GATTACC...

TACAGATTACC...

Searching the Index
Strategy 2: Binary search

* Compare to the middle, refine as higher or lower

Sequence Pos

Searching for GATTACA
* Lo=1I;Hi=15Mid=(1+15)/2=8
* Middle = Suffix[8] = CC
=> Higher: Lo = Mid + |

¢ Lo =9;Hi=15Mid = (9+I5)/2 = 12
+ Middle = Suffix[12] = TACC
=> Lower: Hi = Mid - | Lo
9 | GATTACAGATTACC... 2

 Lo=9Hi= 11:Mid = 0+11)2= 0 I == |
I 5

* Middle = Suffix[10] = GATTACC |;||} || TACAGATTACC...

Searching the Index
Strategy 2: Binary search

* Compare to the middle, refine as higher or lower

Sequence

Searching for GATTACA
* Lo=1I;Hi=15Mid=(1+15)/2=8
* Middle = Suffix[8] = CC
=> Higher: Lo = Mid + |

* Lo=9;Hi=15Mid=(9+15)/2 =12
* Middle = Suffix[12] = TACC
=> Lower: Hi = Mid - |

136

GATTACAGATTACC... 2

* Lo=9%Hi=1l;Mid=9+11)/2=10
* Middle = Suffix[10] = GATTACC
=> Lower: Hi = Mid - |

e Lo=9;Hi=9;

Searching the Index
Strategy 2: Binary search

* Compare to the middle, refine as higher or lower

Sequence

Searching for GATTACA
* Lo=1I;Hi=15Mid=(1+15)/2=8
* Middle = Suffix[8] = CC
=> Higher: Lo = Mid + |

* Lo=9;Hi=15Mid=(9+15)/2 =12
* Middle = Suffix[12] = TACC
=> Lower: Hi = Mid - |

GATTACAGATTACC...

* Lo=9%Hi=1l;Mid=9+11)/2=10
* Middle = Suffix[10] = GATTACC
=> Lower: Hi = Mid - |

* Lo=9Hi=9Mid=(9+9)/2=9
* Middle = Suffix[9] = GATTACA...
=> Match at position 2!

Binary Search Analysis

* Binary Search
Initialize search range to entire list
mid = (hi+lo)/2; middle = suffix[mid]
if query matches middle: done
else if query < middle: pick low range
else if query > middle: pick hi range
Repeat until done or empty range [WHEN?]

* Analysis
* More complicated method
* How many times do we repeat!?

* How many times can it cut the range in half?
* Find smallest x such that: n/(2¥) = |;x = Ig,(n) [32]

* Total Runtime: O(m Ign)
* More complicated, but much faster!
* Looking up a query loops 32 times instead of 3B

[How long does it take to search 6B or 24B nucleotides?]

Binary Search Analysis

* Binary Search
Initialize search range to entire list
mid = (hi+lo)/2; middle = suffix[mid]
if query matches middle: done
else if query < middle: pick low range
else if query > middle: pick hi range
Repeat until done or empty range [WHEN?]

* Analysis
* More complicated method
* How many times do we repeat!?

* How many times can it cut the range in half?
* Find smallest x such that: n/(2¥) = |;x = Ig,(n) [32]

* Total Runtime: O(m Ign)
* More complicated, but much faster!
* Looking up a query loops 32 times instead of 3B

Can be reduced to O(m + Ig n)
using an auxiliary data structure called the LCP array

Suffix Array Construction

* How can we store the suffix array?
[How many characters are in all suffixes combined?]

S=14243+--+n=) i=——"=0(n

* Hopeless to explicitly store 4.5 billion billion characters

* Instead use implicit representation 2
* Keep | copy of the genome, and a list of sorted offsets 9
» Storing 3 billion offsets fits on a server (12GB) 2

* Searching the array is very fast, but it takes time to construct !

* This time will be amortized over many, many searches 4

* Run it once "overnight" and save it away for all future queries Il

TGATTACAGATTACC

Divide and Conquer

* Selection sort is slow because it rescans the entire list for each element
* How can we split up the unsorted list into independent ranges!?
* Hint I: Binary search splits up the problem into 2 independent ranges (hi/lo)
* Hint 2: Assume we know the median value of a list

~
AAAAAN
MMMWMMWM

[How many times can we split a list in half?]

QuickSort Analysis

QuickSort(Input: list of n numbers)
/Il see if we can quit
if (length(list)) <= 1): return list

I/ split list into lo & hi
pivot = median(list)

lo = {}; hi={}; " w

for (i = 1 to length(list)) - 3

if (list[i] < pivot): append(lo, list[i]) "
else: append(hi, list[i]) - =

_ http://en.wikipedia.org/wiki/Quicksort
/| recurse on sublists

return (append(QuickSort(lo), QuickSort(hi))

Analysis (Assume we can find the median in O(n))

0(1) ifn <1
Tn) = { O(n)+2T(n/2) else
|

T(n)=n+2(3) +4(7) +- +n()= D Tr = > n=0(nlgn)

n

Implicit Suffix Comparison (I)

public class CompareSuffixes {
// Compare two suffixes of text starting at sl and s2

// Return -1 if sl is smaller, +1 if s2 is smaller
public static int cmpSuffixes(String text,

if (sl == s2) { return 0; }

int d = 0;

while ((sl + d < text.length()) &&
(s2 + d < text.length())) {

}

char cl = text.charAt(sl+d);
char c2 = text.charAt(s2+d);

if (cl < ¢c2) { return -1; }
else if (c2 < cl) { return +1; }

// else they are the same, keep going
d++;

// no differences through end of string
// return shorter one, meaning having a bigger offset
if (sl < s2) { return +1; }
return -1;

int sl,

int s2) {

Implicit Suffix Comparison (2)

public static void main(String [] args) {
if (args.length < 3) {
System.err.println("usage: CompareSuffixes text sl s2\n");
return;

}

String text = args[0];
int sl = Integer.parselnt(args[l]);
int s2 = Integer.parselnt(args([2]);

// Show the suffixes for display purposes

System.out.format ("Comparing the suffixes of \"%s\"\n", text);
System.out.format("sl [%d]: \"%s\"\n", sl, text.substring(sl));
System.out.format("s2 [%d]: \"%s\"\n", s2, text.substring(s2));

int cmp = cmpSuffixes(text, sl, s2);
System.out.println("Returned: " + cmp);

if (cmp < 0) {
System.out.format("sl \"%s\" < s2 \"%s\"\n",
text.substring(sl),text.substring(s2));
} else if (cmp > 0) {
System.out.format("s2 \"%s\" < sl \"%s\"\n",
text.substring(s2), text.substring(sl));
} else {
System.out.format("sl \"%s\" == s2 \"%s\"\n",
text.substring(sl), text.substring(s2));

CompareSuffixes

$ java CompareSuffixes MichaelSchatz 0 1
Comparing the suffixes of "MichaelSchatz"
sl [0]: "MichaelSchatz"

s2 [1l]: "ichaelSchatz"

Returned: -1

sl "MichaelSchatz" < s2 "ichaelSchatz”

$ java CompareSuffixes MichaelSchatz 10 4
Comparing the suffixes of "MichaelSchatz"
sl [10]: "atz"

s2 [4]: "aelSchatz"

Returned: 1

s2 "aelSchatz" < sl "atz”

$ java CompareSuffixes AAAAAAAAAAAA 0 9
Comparing the suffixes of "AAAAAAAAAAAA"
sl [0]: "AAAAAAAAAAAA"

s2 [9]: "AAA"

Returned: 1

s2 "AAA" < sl "AAAAAAAAAAAA"

Exact Matching Review & Overview

Where is GATTACA in the human genome!?

Brute Force Suffix Array Hash Table Suffix Tree
(3 GB) (>15 GB) (>15 GB) (>51 GB)
BANANA

i O~ BN =0 O NULL /,v
BAN S| AS m
£ox
NAN ! | ANANAS $ NA .- s NAS
5 .
4
2

ANA BANANAS$ O»{ANA= 1 O |ANA= 3 O NULL E 3 5
NAS O>{NaN =20 NuLL $/ \NAS

NANA$

O(m * n) O(m +Ig n) O(1) O(m)

Slow & Easy Full-text index Fixed-length lookup Full-text, but bulky

** These are general techniques applicable to any text search problem ***

Part 2: Burrows Wheeler Transform

Algorithmic challenge

How can we combine the speed of a
suffix array O(m + Ig(n))
(or even O(m)) with the size of a brute
force analysis (n bytes)?

What would such an index look like?

Bowtie: Ultrafast and memory
efficient alignment of short DNA
sequences to the human genome

Slides Courtesy of Ben Langmead

Burrows-Wheeler Transform

* Reversible permutation of the characters in a text

acaacg$ gc$aaac

T BWT(T)

A block sorting lossless data compression algorithm.
Burrows M,Wheeler D] (1994) Digital Equibment Corporation. Technical Report 124

Run Length Encoding

Run Length Encoding

ref[614]:

It was the best of times, it was the worst of times, it was the age
of wisdom, it was the age of foolishness, it was the epoch of belief

, 1t was the epoch of incredulity, it was the season of Light, it wa

s _the season of Darkness, it was the spring of hope, it was the wint
er of despair, we had everything before us, we had nothing before us

, we were all going direct to Heaven, we were all going direct the o
ther way - in short, the period was so far like the present period,
that some of its noisiest authorities insisted on its being received

, _for good or for evil, in the superlative degree of comparison only.$

Run Length Encoding:

* Replace a“run” of a character X with a single X followed by the length of the run
« GAAAAAAAATTACA => GABT2ACA (reverse is also easy to implement)
* If your text contains numbers, then you will need to use a (slightly) more sophisticated encoding

Run Length Encoding

ref[614]:

It was the best of times, it was the worst of times, it was the age
of wisdom, it was the age of foolishness, it was the epoch of belief
, 1t was the epoch of incredulity, it was the season of Light, it wa
s _the season of Darkness, it was the spring of hope, it was the wint
er of despair, we had everything before us, we had nothing before us
, we were all going direct to Heaven, we were all going direct the o
ther way - in short, the period was so far like the present period,
that some of its noisiest authorities insisted on its being received

, _for good or for evil, in the superlative degree of comparison only.$

rle(ref)[614]:

It was the best of times, it was the worst of times, it was the age
of wisdom, it was the age of fo2lishnes2, it was the epoch of belief
, 1t was the epoch of incredulity, it was the season of Light, it wa
s _the season of Darknes2, it was the spring of hope, it was the wint
er of despair, we had everything before us, we had nothing before us
, we were al2 going direct to Heaven, we were al2 going direct the o
ther way - in short, the period was so far like the present period,
that some of its noisiest authorities insisted on its being received

, _for go2d or for evil, in the superlative degre2 of comparison only.$

Run Length Encoding

ref[614]:

It was the best of times, it was the worst of times, it was the age
of wisdom, it was the age of foolishness, it was the epoch of belief

, 1t was the epoch of incredulity, it was the season of Light, it wa

s _the season of Darkness, it was the spring of hope, it was the wint
er of despair, we had everything before us, we had nothing before us

, we were all going direct to Heaven, we were all going direct the o
ther way - in short, the period was so far like the present period,
that some of its noisiest authorities insisted on its being received

, _for good or for evil, in the superlative degree of comparison only.$

bwt[614]:
.dlmssftysesdtrsns y $ yfofeeeetggsfefefggeedrofr,llreef-,fs,,,,,,,
, rNfrsdnnhereghettedndeteegeenstee,ssssst,esssnssffteedttttttttttr,,
, reeefehh p fpDwwwwwwwwwwweehl ew €00 _neeeoaaeoo sephhrrhvh
hwwegmghhhhhhhkrrwwhhssHrrrvtrribbdbcbvs thwwpppvmmirdnnib eoooooo

000000 eennnnnnaai ecc_ tttttttttttttttttts tsgltsLlvtt hhoor
e wrraddwlors r lteirillre ouaanooiioeooooiiihkiiiiiio iei
tsppioi ggnodsc_sss _gfhf fffhwh nsmo uee sioooaeeeeoco ii

cgppeeaoaeooeesseuutetaaaaaaaaaaal el in aale eeereli hrsssnacciiTIi

iiiiiisn oyouli a iiids_ aiiaee tlar

Run Length Encoding

bwt[614]:
.dlmssftysesdtrsns y $ yfofeeeetggsfefefggeedrofr,llreef-,fs,,,,,,,
, rNfrsdnnhereghettedndeteegeenstee,ssssst,esssnssffteedttttttttttr,,

, reeefehh p fpDwwwwwwwwwwweehl ew eo00_neeeoaaeoo sephhrrhvh

hwwegmghhhhhhhkrrwwhhssHrrrvtrribbdbcbvs thwwpppvmmirdnnib eoooooo

000000 eennnnnnaai ecc_ tttttttttttttttttts tsgltsLlvtt hhoor
e wrraddwlors r lteirillre ouaanooiioeooooiiihkiiiiiio iei
tsppioi ggnodsc_sss _gfhf fffhwh nsmo uee sioooaeeeeoco ii

cgppeeaoaeooeesseuutetaaaaaaaaaaal el in aalie eeereli hrsssnacciiTIi

iiiiiisn oyouli a iiids_aiiaee tlar

rle(bwt)[464]:
.dlms2ftysesdtrsns y 25 yfofedtg2sfefefg2e2drofr,l2re2f-,fs,9nfrsdn2
hereghetZ2edndete2ge2nste2,s5t,es3ns2f2te2dt10r,4e3feh2 2p 2fpDwlleZh
1l ew 5e02 ne3oa2eo02 4seph2r2hvh2w2egmgh7kr2w2h2s2Hr3vtr2ib2dbcbvs 2t
hw2p3vm2irdn2ib 2e0l2 4e2n6a2i 3ec2 2t18s tsgltsLlvt2 3h2o2re wr2ad2
wlors 9r 2lteiril2re oua2no2i2o0eo4i3hkibo 2ieitsp2ioi 1l2g2nodsc_s3 g
fhf f3hwh nsmo 2ue2 sio3aed4o02 i2cgp2elaocaeo2e2s2eultetalli 2ei in 2a
2ie e3rei hrs3nac2i2Ii7sn 15o0youi 2a i3ds 2ai2ae2 21ltlar

Run Length Encoding

bwt[614]:
.dlmssftysesdtrsns y $ yfofeeeetggsfefefggeedrofr,llreef-,fs,,,,,,,
, rNfrsdnnhereghettedndeteegeenstee,ssssst,esssnssffteedttttttttttr,,

, reeefehh p fpDwwwwwwwwwwweehl ew eo00_neeeoaaeoo sephhrrhvh

hwwegmghhhhhhhkrrwwhhssHrrrvtrribbdbcbvs thwwpppvmmirdnnib eoooooo

000000 eennnnnnaai ecc_ tttttttttttttttttts tsgltsLlvtt hhoor
e wrraddwlors r lteirillre ouaanooiioeooooiiihkiiiiiio iei
tsppioi ggnodsc_sss gfhf fffhwh nsmo uee siooocaeeeeoco ii

cgppeeaoaeooeesseuutetaaaaaaaaaaal el in aale eeerel hrsssnacciiTIi

iiiiiisn oyouli a iiids_aiiaee tlar

rle(bwt)[464]:
.dlms2ftysesdtrsns y 25 yfofedtg2sfefefg2e2drofr,l2re2f-,fs,9nfrsdn2
hereghetZ2edndete2ge2nste2,s5t,es3ns2f2te2dt10r,4e3feh2 2p 2fpDwlleZh
1l ew 5e02 ne3oa2eo02 4seph2r2hvh2w2egmgh7kr2w2h2s2Hr3vtr2ib2dbcbvs 2t
hw2p3vm2irdn2ib 2eo0l2 4e2n6a2i 3ec2 2t18s_ tsgltsLlvt2 3h2o02re wr2ad2
wlors 9r 2lteiril2re oua2no2i2o0eo4i3hkibo 2ieitsp2ioi 12g2nodsc_s3 g
fhf f3hwh nsmo 2ue2 sio3aed4o02 i2cgp2elaocaeo2e2s2eultetalli 2ei in 2a
2ie e3rei hrs3nac2i2Ii7sn 15o0youili 2a 1i3ds 2ai2ae2 21ltlar

Run Length Encoding

ref[614]:

It was the best of times, it was the worst of times, it was the age
of wisdom, it was the age of foolishness, it was the epoch of belief
, 1t was the epoch of incredulity, it was the season of Light, it wa
s _the season of Darkness, it was the spring of hope, it was the wint
er of despair, we had everything before us, we had nothing before us
, we were all going direct to Heaven, we were all going direct the o
ther way - in short, the period was so far like the present period,
that some of its noisiest authorities insisted on its being received

, _for good or for evil, in the superlative degree of comparison only.$

rle(bwt)[464]:

.dlms2ftysesdtrsns y 25 yfofedtg2sfefefg2e2drofr,l2re2f-,fs,9nfrsdn2
hereghetZ2edndete2ge2nste2,s5t,es3ns2f2te2dt10r,4e3feh2 2p 2fpDwlleZh
1l ew 5e02 ne3oa2eo02 4seph2r2hvh2w2egmgh7kr2w2h2s2Hr3vtr2ib2dbcbvs 2t
hw2p3vm2irdn2ib 2eo0l2 4e2n6a2i 3ec2 2t18s_ tsgltsLlvt2 3h2o02re wr2ad2
wlors 9r 2lteiril2re oua2no2i2o0eo04i3hkibo 2ieitsp2ioi 12g2nodsc _s3 g
fhf f3hwh nsmo 2ue2 sio3aed4o02 i2cgp2elaocaeo2e2s2eultetalli 2ei in 2a

2ie e3rei hrs3nac2i2Ii7sn 15o0youili 2a 1i3ds 2ai2ae2 21ltlar

Run Length Encoding

ref[614]:

It was the best of times, it was the worst of times, it was the age
of wisdom, it was the age of foolishness, it was the epoch of belief
, 1t was the epoch of incredulity, it was the season of Light, it wa
s _the season of Darkness, it was the spring of hope, it was the wint
er of despair, we had everything before us, we had nothing before us
, we were all going direct to Heaven, we were all going direct the o
ther way - in short, the period was so far like the present period,
that some of its noisiest authorities insisted on its being received

, _for good or for evil, in the superlative degree of comparison only.$

rle(bwt)[464]:

.dlms2ftysesdtrsns y 25 yfofedtg2sfefefg2e2drofr,l2re2f-,fs,9nfrsdn2
hereghetZ2edndete2ge2nste2,s5t,es3ns2f2te2dt10r,4e3feh2 2p 2fpDwlleZh
1l ew 5e02 ne3oa2eo02 4seph2r2hvh2w2egmgh7kr2w2h2s2Hr3vtr2ib2dbcbvs 2t
hw2p3vm2irdn2ib 2eo0l2 4e2n6a2i 3ec2 2t18s_ tsgltsLlvt2 3h2o02re wr2ad2
wlors 9r 2lteiril2re oua2no2i2o0eo04i3hkibo 2ieitsp2ioi 12g2nodsc _s3 g
fhf f3hwh nsmo 2ue2 sio3aed4o02 i2cgp2elaocaeo2e2s2eultetalli 2ei in 2a

2ie_e3rel gaved 614-464 = 150 bytes (24%) with zero loss of information!

Common to save 50% to 90% on real world files with bzip2

Burrows-Wheeler Transform

* Reversible permutation of the characters in a text

acaacg$ gc$aaac

T BWT(T)

A block sorting lossless data compression algorithm.
Burrows M,Wheeler D] (1994) Digital Equibment Corporation. Technical Report 124

Burrows-Wheeler Transform

* Reversible permutation of the characters in a text

$acaacg
aacg$ac
acaacg$
acaacg$ — acg$aca— gc$aaac
+—— caacg$a+——
cg$acaa
g$acaac

Burrows-\Wheeler
Matrix BWM(T)

T BWT(T)

* BWT(T) is the index for T

A block sorting lossless data compression algorithm.
Burrows M,Wheeler D] (1994) Digital Equibment Corporation. Technical Report 124

Burrows-Wheeler Transform

* Reversible permutation of the characters in a text

Rank: 2 Sacaacg
~ aacg$ac

T BWT(T)
cg$acaa ™
g$acaac Rank: 2
Burrows-Wheeler
Matrix BWM(T) LE Property
implicitly encodes
* BWIT(T) is the index for T Suffix Array

A block sorting lossless data compression algorithm.
Burrows M,Wheeler D] (1994) Digital Equibment Corporation. Technical Report 124

o oOoo0owo oD

Burrows-Wheeler Transform

* Recreating T from BWT(T)

— Start in the first row and apply LF repeatedly,
accumulating predecessors along the way

Original T

f_H

g cg acg aacg caacg acaacg
weee=ig $ g $ g S g $ g $ g
a c a c a C a=——»cC, a c

$\ a $ a $ a $ fa S\: $

a\ a a a a a=———»a’ a a a

al\c a ¢ a/’c a c¢ a

a \c a yoeo=—wa’ c a ¢ a ¢ a

c ge———»c’ g c g c g c g c

[Decode this BWT string: ACTGAS$TTA]

BWT Exact Matching

* LFc(r, c) does the same thing as LF(r) but it
isnores r’ s actual final character and
“pretends’ it s c:

LFc(5,9) =8

$acaacg
aacg$ac
acaacgs$
acg$aca
caacg$alg|L

cosacar
Rank<g$ aac ank.

F

BWT Exact Matching

* Start with a range, (top, bot) encompassing all
rows and repeatedly apply LFc:

top = LFc(top, qc); bot = LFc(bot, qc)
gc = the next character to the left in the query

aac aa a

—$ gc, $ g S g S g
a c a c a C __,— c
a $ |\ a $. — $a _——a $
a a |\ a a a -~ a a
c a — aa _—*c¢ aa c a
c a a c a c a
g c ,—g ca g c g c

c—

Ferragina P, Manzini G: Opportunistic data structures with applications. FOCS. IEEE Computer Society; 2000.

[Search for TTA this BWT string: ACTGAS$TTA]

Algorithm Overview

1. Split read into segments

Read Read (reverse complement)
CCAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA TACAGGCCTGGGTAAAATAAGGCTGAGAGCTACTGG

Policy: extract 16 nt seed every 10 nt

Seeds
+, 0: CCAGTAGCTCTCAGCC -, 0: TACAGGCCTGGGTAAA
+, 10: TCAGCCTTATTTTACC -, 10: GGTAAAATAAGGCTGA
+, 20: TTTACCCAGGCCTGTA -, 20: GGCTGAGAGCTACTGG

2. Lookup each segment and prioritize

) :
Seeds Ungapped Seed alignments (as B ranges)
+, 0: CCAGTAGCTCTCAGCC alignment with { (211, 218}, (219, 214] }
+,10: TCAGCCTTATTTTACC FM fnoox { [653, 654], [651, 653] }
+, 20: TTTACCCAGGCCTGTA s : { [684, 685] }
-, 0: TACAGGCCTGGGTAAA . s {}
-, 10: GGTAAAATAAGGCTGA { }
-, 20: GGCTGAGAGCTACTGG R { [624, 625] }
3. Evaluate end-to-end match
. . f \ -

Extension candidates SIMD dynamic SAM alignments

SA:684 chrl2:1955 programming rl gsn chrlze :935 0
A ' 5 aligner *

SA:624, chr2:462 _ ne CCAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA

- IITIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
AS:i:0 XS:i:=2 XN:i:0
XM:i:0 X0:i:0 XG:1i:0

i MD:Z:36 YT:Z:UU

SA:211: chr4:762
SA:213: chrl2:1935

NM:1:0
SA:652: chrl2:1945 YM:i:0

(Langmead & Salzberg, 2012)

Next Steps

|. Reflect on the magic and power of Suffix Arrays and the BWT!

|. Assignment 8 due Friday November 16 @ |0pm

