
CS 600.226: Data Structures
Michael Schatz

Nov 12, 2018
Lecture 31: Suffix Arrays

HW8

Assignment 8: Competitive Spelling Bee
Out on: November 2, 2018
Due by: November 9, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 30% (where applicable),
Functionality 40% (where applicable)

Overview

Your "one" task for this assignment is to take the simple spell checker we
give you and to turn it into the fastest, most memory-efficient spell
checker in the course, subject to the constraints detailed below. You are
expected to do this by (once again) implementing the Map interface, this
time using one of several hash table techniques (your choice, see below).

Advanced Hashing Summary

http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

Hashing

Hash Function enables Map<K, V> as Map<Integer, V> as Array<V>
• h(): K -> Integer for any possible key K
• h() should distribute the keys uniformly over all integers
• if k1 and k2 are “close”, h(k1) and h(k2) should be “far” apart

Typically want to return a small integer, so that we can use it as an index
into an array
• An array with 4B cells in not very practical if we only expect a few thousand

to a few million entries
• How do we restrict an arbitrary integer x into a value up to some maximum

value n?
0 <= x % n < n

Compression function: c(i) = abs(i) % length(a)
Transforms from a large range of integers to a small range (to store in array a)

Array[“Mike”] = 10; Array[“Peter”] = 15 BST:O(lg n) -> Hash:O(1)

Array[13] = 10; Array[42] = 15 O(1)

Collision Strategies
1. Separate chaining:
More object overhead, but degrades gracefully as load approaches 1

2. Linear Probing
Minimal overhead, easy to implement, but tends to form large clusters

x x x

x x

3. Quadratic Probing
Slightly more complex, but skips over larger and larger amounts to find holes

x

x x

4. Double Hashing
Stride length depends on h2(key)

Advanced Hashing Summary

Bloom Filters
• Store a huge set in a tiny amount of space

allowing for a small rate of false positives.
• Used as a quick pre-filter to determine if

the slow operation needs to take place

Cuckoo Hashing
• Simple open addressing technique with

O(1) lookup with expected O(1) insert
• Often outperforms other collision

management schemes

Collisions
• Be careful of collisions!
• Perfect hashing guarantees we avoid

collisions, universal hashing lets us pick a
new hash function from a family as needed

Part 1: Intro to Genomics
aka Data Structures on Strings

DNA: The secret of life

• Height
• Hair, eye, skin color
• Broad/narrow, small/large features
• Susceptibility to disease
• Response to drug treatments
• Longevity and cognition

Physical traits tend to be strongly genetic,
social characteristics tend to be strongly
environmental, and everything else is a
combination

Your DNA, along with your
environment and experiences,

shapes who you are

Cells & DNA

Your specific nucleotide
sequence encodes the

genetic program for your
cells and ultimately your

traits

Each cell of your body
contains an exact copy
of your 3 billion base

pair genome.

Cells & DNA

Your specific nucleotide
sequence encodes the

genetic program for your
cells and ultimately your

traits

Each cell of your body
contains an exact copy
of your 3 billion base

pair genome.

The Origins of DNA Sequencing

Sanger et al. (1977) Nature
1st Complete Organism

Bacteriophage φX174; 5375 bp

Awarded Nobel Prize in 1980

Radioactive Chain Termination
5000bp / week / person

http://en.wikipedia.org/wiki/File:Sequencing.jpg
http://www.answers.com/topic/automated-sequencer

Milestones in DNA Sequencing

Applied Biosystems

Sanger Sequencing

768 x 1000 bp reads / day =
~1Mbp / day

(TIGR/Celera, 1995-2001)

Oxford Nanopore MinION
• Thumb drive sized sequencer

powered over USB

• Capacity for 512 reads at once

• Senses DNA by measuring
changes to ion flow

Nanopore Sequencing

Nanopore Basecalling

Basecalling currently performed at Amazon with frequent updates to algorithm

http://www.genome.gov/sequencingcosts/

Worldwide capacity exceeds 35 Pbp / year
Approximately 500k human genomes sequenced

… on track to 1 Ebp / year by 2020

… on track to 1 Zbp / year by 2030

A zetta-what?

Cost per Genome

How much is a zettabase?

Unit Size
Base 1
Kilobase 1,000
Megabase 1,000,000
Gigabase 1,000,000,000
Terabase 1,000,000,000,000
Petabase 1,000,000,000,000,000
Exabase 1,000,000,000,000,000,000
Zettabase 1,000,000,000,000,000,000,000

How much is a zettabase?

100 GB / Genome
4.7GB / DVD

~20 DVDs / Genome

X

10,000,000,000 Genomes

=

1ZB Data
200,000,000,000 DVDs

150,000 miles of DVDs
~ ½ distance to moon

Both currently ~100PB
And growing exponentially

How much is a zettabase?

100 GB / Genome
4.7GB / DVD

~20 DVDs / Genome

X

10,000,000,000 Genomes

=

1ZB Data
200,000,000,000 DVDs

150,000 miles of DVDs
~ ½ distance to moon

Both currently ~100PB
And growing exponentially

The instruments provide the data, but
none of the answers to any of these

questions.

What software and systems will?

And who will create them?

Schatzlab Overview

Agricultural
Genomics

Rice, Corn, Wheat and
many others

Chin et al. (2016)
Schatz et al. (2014)

Human Genetics

Genetics of Autism
Spectrum Disorders

Narzisi et al. (2015)
Iossifov et al. (2014)

Evolutionary
Biology

Inflorescence
diversity

Lemmon et al. (2016)
Park et al. (2011)

Cancer Biology

Indels, CNVs, SVs, &
Cell Phylogenetics

Nattestad et al. (2018)
Goodwin et al. (2015)

Computational Biology @ CS

Alexis Battle

Liliana Florea

Ben Langmead

Mihaela Pertea

James Taylor

Steven Salzberg

Computational Biology @ JHU

Malone Center
BME & Biology

JHSPH
JHMI

Comp Bio @ CS

Sensors & Metadata
Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies

IO Systems
Hardrives, Networking, Databases, Compression, LIMS

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

Scalable Algorithms
Streaming, Sampling, Indexing, Parallel

Machine Learning
classification, modeling,

visualization & data Integration

Results
Domain

Knowledge

Computational Biology

Sensors & Metadata
Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies

IO Systems
Hardrives, Networking, Databases, Compression, LIMS

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

Scalable Algorithms
Streaming, Sampling, Indexing, Parallel

Machine Learning
classification, modeling,

visualization & data Integration

Results
Domain

Knowledge

Computational Biology

Nanopore sequencing meets epigenetics
Schatz, MC (2017) Nature Methods 14, 347–348 (2017) doi:10.1038/nmeth.4240

Sensors & Metadata
Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies

IO Systems
Hardrives, Networking, Databases, Compression, LIMS

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

Algorthmics
Streaming, Sampling, Indexing, Parallel

Machine Learning
classification, modeling,

visualization & data Integration

Results
Domain

Knowledge

Computational Biology

Sensors & Metadata
Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies

IO Systems
Hardrives, Networking, Databases, Compression, LIMS

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

Scalable Algorithms
Streaming, Sampling, Indexing, Parallel

Machine Learning
classification, modeling,

visualization & data Integration

Results
Domain

Knowledge

Computational Biology

Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
Langmead et al. (2009) Genome Biology 10:R25 doi: 10.1186/gb-2009-10-3-r25

Sensors & Metadata
Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies

IO Systems
Hardrives, Networking, Databases, Compression, LIMS

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

Scalable Algorithms
Streaming, Sampling, Indexing, Parallel

Machine Learning
classification, modeling,

visualization & data Integration

Results
Domain

Knowledge

Computational Biology

Reproducible RNA-seq analysis using recount2
Collado-Torres et al (2017) Nature Biotechnology. 35, 319–321

Sensors & Metadata
Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies

IO Systems
Hardrives, Networking, Databases, Compression, LIMS

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

Algorithmics
Streaming, Sampling, Indexing, Parallel

Machine Learning
classification, modeling,

visualization & data Integration

Results
Domain

Knowledge

Computational Biology

Sensors & Metadata
Sequencers, Microscopy, Imaging, Mass spec, Metadata & Ontologies

IO Systems
Hardrives, Networking, Databases, Compression, LIMS

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

Scalable Algorithms
Streaming, Sampling, Indexing, Parallel

Machine Learning
classification, modeling,

visualization & data Integration

Results
Domain

Knowledge

Computational Biology

Genetic effects on gene expression across human tissues.
The GTEx Consortium (2017) Nature 550, 204–213

Personal Genomics
How does your genome compare to the reference?

Heart Disease

Cancer

Presidential smile

Searching for GATTACA
• Where is GATTACA in the human genome?

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

No match at offset 1

• Strategy 1: Brute Force

Searching for GATTACA
• Where is GATTACA in the human genome?

• Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

Match at offset 2

Searching for GATTACA
• Where is GATTACA in the human genome?

• Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A …

No match at offset 3…

Searching for GATTACA
• Where is GATTACA in the human genome?

• Strategy 1: Brute Force

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

No match at offset 9 <- Checking each possible position takes time

Brute Force Analysis

• Brute Force:
– At every possible offset in the genome:

• Do all of the characters of the query match?

• Analysis
– Simple, easy to understand
– Genome length = n [3B]
– Query length = m [7]
– Comparisons: (n-m+1) * m [21B]

• Overall runtime: O(nm)
[How long would it take if we double the genome size, read length?]

[How long would it take if we double both?]

Expected Occurrences
The expected number of occurrences (e-value) of a given sequence in a
genome depends on the length of the genome and inversely on the length
of the sequence
– 1 in 4 bases are G, 1 in 16 positions are GA, 1 in 64 positions are GAT, …
– 1 in 16,384 should be GATTACA
– E=n/(4m) [183,105 expected occurrences]

[How long do the reads need to be for a significant match?]

0 5 10 15 20 25 30

0e
+0

0
2e

+0
8

4e
+0

8
6e

+0
8

Evalue and sequence length
cutoff 0.1

seq len

e−
va

lu
e

human (3B)
fly (130M)
E. coli (5M)

0 5 10 15 20 25 30

1e
−0

9
1e
−0

5
1e
−0

1
1e

+0
3

1e
+0

7

E−value and sequence length
cutoff 0.1

seq len

e−
va

lu
e

human (3B)
fly (130M)
E. coli (5M)

Brute Force Reflections
Why check every position?
– GATTACA can't possibly start at position 15 [WHY?]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …

T G A T T A C A G A T T A C C …

G A T T A C A

– Improve runtime to O(n + m) [3B + 7]
• If we double both, it just takes twice as long
• Knuth-Morris-Pratt, 1977
• Boyer-Moyer, 1977, 1991

– For one-off scans, this is the best we can do (optimal performance)
• We have to read every character of the genome, and every character of the query
• For short queries, runtime is dominated by the length of the genome

How can we make this go faster?

Hash Table Lookup
• By construction, multiple keys have the same hash value

– Store elements with the same key in a bucket chained together
• A good hash evenly distributes the values: R/H have the same hash value

– Looking up a value scans the entire bucket
• Slows down the search as a function of the hash table load

GATTACA: 2

CGGACAT:349

GATTACA:5000

…

00

01

…

68

…

126

127

h(TGATTAC)

h(GATTACA)

h(ATTACAG)

How many elements do we expect per bucket?

ATTACAG: 3

GGCATCA:928

…

What if we don’t know how long the queries will be?

Full-Text Indexing: Suffix Arrays
• What if we need to check many queries?

• We don't need to check every page of the phone book to find 'Schatz'
• Sorting alphabetically lets us immediately skip 96% (25/26) of the book

without any loss in accuracy

• Sorting the genome: Suffix Array (Manber & Myers, 1991)
– Sort every suffix of the genome

Split into n suffixes Sort suffixes alphabetically

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

• Strategy 2: Binary search
• Compare to the middle, refine as higher or lower

• Searching for GATTACA
• Lo = 1; Hi = 15;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

• Strategy 2: Binary search
• Compare to the middle, refine as higher or lower

• Searching for GATTACA
• Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
• Middle = Suffix[8] = CC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

• Strategy 2: Binary search
• Compare to the middle, refine as higher or lower

• Searching for GATTACA
• Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
• Middle = Suffix[8] = CC

=> Higher: Lo = Mid + 1

Hi

Lo

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

• Strategy 2: Binary search
• Compare to the middle, refine as higher or lower

• Searching for GATTACA
• Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
• Middle = Suffix[8] = CC

=> Higher: Lo = Mid + 1

• Lo = 9; Hi = 15;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

• Strategy 2: Binary search
• Compare to the middle, refine as higher or lower

• Searching for GATTACA
• Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
• Middle = Suffix[8] = CC

=> Higher: Lo = Mid + 1

• Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
• Middle = Suffix[12] = TACC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

• Strategy 2: Binary search
• Compare to the middle, refine as higher or lower

• Searching for GATTACA
• Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
• Middle = Suffix[8] = CC

=> Higher: Lo = Mid + 1

• Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
• Middle = Suffix[12] = TACC

=> Lower: Hi = Mid - 1

• Lo = 9; Hi = 11;

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

• Strategy 2: Binary search
• Compare to the middle, refine as higher or lower

• Searching for GATTACA
• Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
• Middle = Suffix[8] = CC

=> Higher: Lo = Mid + 1

• Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
• Middle = Suffix[12] = TACC

=> Lower: Hi = Mid - 1

• Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
• Middle = Suffix[10] = GATTACC

Lo

Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

• Strategy 2: Binary search
• Compare to the middle, refine as higher or lower

• Searching for GATTACA
• Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
• Middle = Suffix[8] = CC

=> Higher: Lo = Mid + 1

• Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
• Middle = Suffix[12] = TACC

=> Lower: Hi = Mid - 1

• Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
• Middle = Suffix[10] = GATTACC

=> Lower: Hi = Mid - 1

• Lo = 9; Hi = 9;

Lo
Hi

Searching the Index

Sequence Pos

1 ACAGATTACC… 6

2 ACC… 13

3 AGATTACC… 8

4 ATTACAGATTACC… 3

5 ATTACC… 10

6 C… 15

7 CAGATTACC… 7

8 CC… 14

9 GATTACAGATTACC… 2

10 GATTACC… 9

11 TACAGATTACC… 5

12 TACC… 12

13 TGATTACAGATTACC… 1

14 TTACAGATTACC… 4

15 TTACC… 11

• Strategy 2: Binary search
• Compare to the middle, refine as higher or lower

• Searching for GATTACA
• Lo = 1; Hi = 15; Mid = (1+15)/2 = 8
• Middle = Suffix[8] = CC

=> Higher: Lo = Mid + 1

• Lo = 9; Hi = 15; Mid = (9+15)/2 = 12
• Middle = Suffix[12] = TACC

=> Lower: Hi = Mid - 1

• Lo = 9; Hi = 11; Mid = (9+11)/2 = 10
• Middle = Suffix[10] = GATTACC

=> Lower: Hi = Mid - 1

• Lo = 9; Hi = 9; Mid = (9+9)/2 = 9
• Middle = Suffix[9] = GATTACA…

=> Match at position 2!

Lo
Hi

Binary Search Analysis
• Binary Search

Initialize search range to entire list
mid = (hi+lo)/2; middle = suffix[mid]
if query matches middle: done
else if query < middle: pick low range
else if query > middle: pick hi range

Repeat until done or empty range [WHEN?]

• Analysis
• More complicated method
• How many times do we repeat?

• How many times can it cut the range in half?
• Find smallest x such that: n/(2x) ≤ 1; x = lg2(n) [32]

• Total Runtime: O(m lg n)
• More complicated, but much faster!
• Looking up a query loops 32 times instead of 3B

[How long does it take to search 6B or 24B nucleotides?]

Suffix Array Construction
• How can we store the suffix array?

[How many characters are in all suffixes combined?]

S = 1 + 2 + 3 + · · ·+ n =
nX

i=1

i =
n(n+ 1)

2
= O(n2)

Pos

6

13

8

3

10

15

7

14

2

9

5

12

1

4

11

TGATTACAGATTACC

• Hopeless to explicitly store 4.5 billion billion characters

• Instead use implicit representation
• Keep 1 copy of the genome, and a list of sorted offsets
• Storing 3 billion offsets fits on a server (12GB)

• Searching the array is very fast, but it takes time to construct
• This time will be amortized over many, many searches
• Run it once "overnight" and save it away for all future queries

Quadratic Sorting Algorithms

Insertion Sort
Slide next value into

correct position

Bubble Sort
Swap up bigger

values over smaller

Selection Sort
Move next smallest

into position

These algorithms will work, but are very slow for 3B suffixes!

How can we go faster?

Divide and Conquer
• Selection sort is slow because it rescans the entire list for each element

• How can we split up the unsorted list into independent ranges?
• Hint 1: Binary search splits up the problem into 2 independent ranges (hi/lo)
• Hint 2: Assume we know the median value of a list

n

[How many times can we split a list in half?]

=< > 2 x n/2

=< > = =< > 4 x n/4

< = > = < = > = < = > = < = > 8 x n/8

16 x n/16

2i x n/2i

QuickSort Analysis

http://en.wikipedia.org/wiki/Quicksort

T (n) =

⇢
O(1) if n  1
O(n) + 2T (n/2) else

T (n) = n+ 2(
n

2
) + 4(

n

4
) + · · ·+ n(

n

n
) =

lg(n)X

i=0

2in

2i
=

lg(n)X

i=0

n = O(n lg n)

QuickSort(Input: list of n numbers)
// see if we can quit
if (length(list)) <= 1): return list

// split list into lo & hi
pivot = median(list)
lo = {}; hi = {};
for (i = 1 to length(list))
if (list[i] < pivot): append(lo, list[i])
else: append(hi, list[i])

// recurse on sublists
return (append(QuickSort(lo), QuickSort(hi))

Analysis (Assume we can find the median in O(n))

Picking the Median
• What if we miss the median and do a 90/10 split instead?

n

[How many times can we cut 10% off a list?]

…+ 9in/10i

n/10 + 9n/10 < = >

... + 81n/100< = >

< = … + 6561n/10000>

< = > ... + 729n/1000

< = > … + 59049n/100000

< = > … + 531441n/1000000

< = > … + 4782969n/10000000

Randomized Quicksort
• 90/10 split runtime analysis

• If we randomly pick a pivot, we will get at least a
90/10 split with very high probability
– Everything is okay as long as we always slice off a

fraction of the list

[Challenge Question: What happens if we slice 1 element]

(9/10)xn  1

(10/9)x � n

x � log10/9 n

Find smallest x s.t.

T (n) = n+ T (
n

10
) + T (

9n

10
)

T (n) = n+
n

10
+ T (

n

100
) + T (

9n

100
) +

9n

10
+ T (

9n

100
) + T (

81n

100
)

T (n) = n+ n+ T (
n

100
) + 2T (

9n

100
) + T (

81n

100
)

T (n) =

log10/9(n)X

i=0

n = O(n lg n)

Exact Matching Review & Overview
Where is GATTACA in the human genome?

Hash Table
(>15 GB)

O(|q|)

Full-text, but bulky

Suffix Tree
(>51 GB)

O(lg |r|)

Full-text index

Suffix Array
(>15 GB)

Brute Force
(3 GB)

O(|q| * |r|)

Slow & Easy

BANANA
BAN
ANA
NAN
ANA

*** These are general techniques applicable to any search problem ***

O(1)

Fixed-length lookup

Next Steps
1. Reflect on the magic and power of Suffix Arrays!

1. Assignment 8 due Friday November 16 @ 10pm

