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HW7

Assignment 7: Whispering Trees
Out on: November 2, 2018
Due by: November 9, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The seventh assignment is all about ordered maps, specifically fast ordered 
maps in the form of balanced binary search trees.  You'll work with a little 
program called Words that reads text from standard input and uses an 
(ordered) map to count how often different words appear. We're giving 
you a basic (unbalanced) binary search tree implementation of 
OrderedMap that you can use to play around with the Words program 
and as starter code for your own developments.



Agenda
1. Recap on BST, AVL trees and Treaps

2. Hash Tables



Part 1: BST



Binary Search Tree

<k

A BST is a binary tree with a special ordering property:
If a node has value k, then the left child (and its descendants) will have 
values smaller than k; and the right child (and its descendants) will have 

values greater than k

>k

k

Can a BST have duplicate values?



Searching

has(7):

has (2):

What is the runtime for has() ?

compare 6 => compare 8 => found 7

compare 6 => compare 4 => compare 1 => not found!



Constructing

Note the shape of a general BST will depend on the order of insertions
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What is the “worst” order for constructing the BST?

What is the “best” order for constructing the BST?

What happens for a random ordering?



Random Tree Height
## Trying all permutations of 14 distinct keys

numtrees: 87,178,291,200 average height: 6.63

maxheights[0]: 0 0.00%
maxheights[1]: 0 0.00%
maxheights[2]: 0 0.00%
maxheights[3]: 0 0.00%
maxheights[4]: 21964800 0.03%
maxheights[5]: 10049994240 11.53%
maxheights[6]: 33305510656 38.20%
maxheights[7]: 27624399104 31.69%
maxheights[8]: 12037674752 13.81%
maxheights[9]: 3393895680 3.89%
maxheights[10]: 652050944 0.75%
maxheights[11]: 85170176 0.10%
maxheights[12]: 7258112 0.01%
maxheights[13]: 364544 0.00%
maxheights[14]: 8192 0.00% 7hrs 17m



Random Tree Height
## Trying all permutations of 15 distinct keys

numtrees: 1,307,674,368,000 average height: 6.83

maxheights[0]: 0      0.00%
maxheights[1]: 0      0.00%
maxheights[2]: 0      0.00%
maxheights[3]: 0      0.00%
maxheights[4]: 21964800       0.00%
maxheights[5]: 92644597760    7.08%
maxheights[6]: 450049847808   34.42%
maxheights[7]: 450900458496   34.48%
maxheights[8]: 223762187264   17.11%
maxheights[9]: 71589889024    5.47%
maxheights[10]: 15916504576    1.22%
maxheights[11]: 2496484352     0.19%
maxheights[12]: 271953920      0.02%
maxheights[13]: 19619840       0.00%
maxheights[14]: 843776 0.00%
maxheights[15]: 16384  0.00% 5 days 22hrs 11min



Random Tree Height
## Trying all permutations of 16 distinct keys

$ tail -20 heights.16.log
tree[96520000000]: 1 3 4 10 11 6 2 7 8 14 9 13 15 16 12 5 maxheight: 8
tree[96521000000]: 1 3 4 10 11 6 13 8 9 2 7 15 14 12 5 16 maxheight: 8
tree[96522000000]: 1 3 4 10 11 6 15 14 7 13 2 12 5 8 9 16 maxheight: 9
tree[96523000000]: 1 3 4 10 11 7 8 12 13 16 6 9 15 2 5 14 maxheight: 10
tree[96524000000]: 1 3 4 10 11 7 5 2 12 9 6 15 14 8 13 16 maxheight: 9
tree[96525000000]: 1 3 4 10 11 7 14 8 2 15 5 12 13 6 9 16 maxheight: 8
tree[96526000000]: 1 3 4 10 11 7 16 15 9 2 6 13 8 5 12 14 maxheight: 9
tree[96527000000]: 1 3 4 10 11 8 9 12 15 13 7 5 14 6 2 16 maxheight: 9
tree[96528000000]: 1 3 4 10 11 8 12 2 13 16 15 7 9 14 5 6 maxheight: 10
tree[96529000000]: 1 3 4 10 11 8 15 6 12 9 14 13 7 16 2 5 maxheight: 9
tree[96530000000]: 1 3 4 10 11 9 7 15 2 8 13 6 14 12 5 16 maxheight: 8
tree[96531000000]: 1 3 4 10 11 9 2 13 6 5 8 12 7 14 15 16 maxheight: 9
tree[96532000000]: 1 3 4 10 11 9 13 2 15 14 12 7 6 16 5 8 maxheight: 8
tree[96533000000]: 1 3 4 10 11 9 16 8 14 2 5 15 6 12 13 7 maxheight: 9
tree[96534000000]: 1 3 4 10 11 2 8 15 12 13 5 9 6 14 7 16 maxheight: 9
tree[96535000000]: 1 3 4 10 11 2 5 13 6 15 16 8 9 7 12 14 maxheight: 8
…

Only 95 more days to go J



Part 2: AVL Trees



Balanced Trees
Note that we cannot require a BST to be perfectly balanced:
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Since neither tree with 2 keys is perfectly balanced we cannot insist on it

AVL Condition: 
For every node n, the height of n’s left and right subtree’s differ by at most 1



Maintaining Balance
Assume that the tree starts in a slightly unbalanced state:

h+1 h

k

< >
h h+1

k

< >

Woohoo! AVL Violations ;-)

Insert left,
AVL Violation!

Insert right,
Rebalanced

Insert left,
Rebalanced

Insert right,
AVL Violation!
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Inserting a new value can maintain the subtree heights or 1 of 4 possible outcomes:



Tree Rotations
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Note: Rotating a BST maintains the BST condition!

Green < A < Brown < B < Purple

right-rotation(B)

left-rotation(A)



Complete Example
Insert these values: 4 5 7 2 1 3
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ins(5)

ins(7)

ins(2)

ins(1) ins(3)

l(4)

r(4)

l(2) r(5)

Note: 
AVL Violations are fixed bottom up



Part 3: Treaps



BSTs versus Heaps

<k >k

k

≥p ≥p

p

≤p

BST

All keys in left subtree 
of k are < k, all keys in 
right are >k

Tricky to balance, but 
fast to find

Heap

All children of the node 
with priority p have 
priority ≥p

Easy to balance, but 
hard to find (except 
min/max)



BSTs versus Heaps

<k >k

k
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BST

All keys in left subtree 
of k are < k, all keys in 
right are >k

Tricky to balance, but 
fast to find

Heap

All children of the node 
with priority p have 
priority ≥p

Easy to balance, but 
hard to find (except 
min/max)



Treap

<k
/p

>k
/p

k/p

A treap is a binary search tree where the nodes have both user 
specified keys (k) and internally assigned priorities (p).

When inserting, use standard BST insertion algorithm, but then 
use rotations to iteratively move up the node while it has lower 
priority than its parent (analogous to a heap, but with rotations)



A (better) example

7/3

Insert the following pairs: 7/3, 2/0, 1/7, 8/2, 3/9, 5/1, 4/7

Notice that we inserted the same keys, but with different priorities
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Just by changing the priorities, we can improve the balance!



Treap Reflections

Insert the following pairs:  7/3, 2/0, 1/7, 8/2, 3/9, 5/1, 4/7

Insert the following pairs: 7/1, 2/2, 1/3, 8/4, 3/5, 5/6, 4/7 7/1
/   \

2/2   8/4
/ \

1/3 3/5
\
5/6
/

4/7

2/0
/   \

1/7   5/1
/   \

4/7     8/2
/      /

3/9    7/3

Since the priorities are in sorted order, becomes a 
standard BST and may have O(n) height

With a standard BST, for 2 to be root it would have to be 
the first key inserted, and 5 would have to proceed all 

the other keys except 1, …
It is as if we saw the sequence: 

2,5,8,7,1,4,3
Note priorities in sorted order: 
2/0, 5/1, 8/2/, 7/3, 1/7, 4/7, 3/9



What priorities should we assign to 
maintain a balanced tree?

Math.random()

Using random priorities essentially shuffles the input data 
(which might have bad linear height) 

into a random permutation 
that we expect to have O(log n) height 

J

It is possible that we could randomly shuffle into a poor tree 
configuration, but that is extremely rare. 

In most practical applications, a treap will perform just fine, and will often 
outperform an AVL tree that guarantees O(log n) height but has higher 

constants



Self Balancing Trees
Understanding the distinction between different kinds of 

balanced search trees: 

• AVL trees guarantee worst case O(log n) operations by carefully
accounting for the tree height

• treaps guarantee expected O(log n) operations by selecting a
random permutation of the input data

• splay trees guarantee amortized O(log n) operations by
periodically applying a certain set of rotations (see lecture notes)

If you have to play it safe and don’t trust your random numbers,
=> AVL trees are the way to go.

If you can live with the occasional O(n) op
=> splay trees are the way to go.

And if you trust your random numbers
=> treaps are the way to go.



Part 4: Hash Tables



Maps 
aka dictionaries

aka associative arrays

Mike -> Malone 323
Peter -> Malone 223
Joanne   -> Malone 225
Zack -> Malone 160 suite
Debbie   -> Malone 160 suite
Yair -> Malone 160 suite
Ron -> Garland 242

Key (of Type K) -> Value (of Type V) 

Note you can have multiple keys with the same value,
But not okay to have one key map to more than 1 value



Maps, Sets, and Arrays 

Mike -> True
Peter -> True
Joanne   -> True
Zack -> True
Debbie   -> True
Yair -> True
Ron -> True

Sets as Map<T, Boolean>

0 -> Mike
1 -> Peter
2 -> Joanne
3 -> Zack
4 -> Debbie
5 -> Yair
6 -> Ron

Array as Map<Integer, T>

Maps are extremely flexible and powerful, 
and therefore are extremely widely used

Built into many common languages: Awk, Python, Perl, JavaScript…

Could we do everything in O(lg n) time or faster?
=> Balanced Search Trees



Maps, Sets, and Arrays 

Mike -> True
Peter -> True
Joanne   -> True
Zack -> True
Debbie   -> True
Yair -> True
Ron -> True

Sets as Map<T, Boolean>

0 -> Mike
1 -> Peter
2 -> Joanne
3 -> Zack
4 -> Debbie
5 -> Yair
6 -> Ron

Array as Map<Integer, T>

Maps are extremely flexible and powerful, 
and therefore are extremely widely used

Built into many common languages: Awk, Python, Perl, JavaScript…

Could we do everything in O(lg n) time or faster?
=> Balanced Search Trees



ADT: Arrays
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a:

• Fixed length data structure
• Constant time get() and put() methods
• Definitely needs to be generic J



Hashing

Hash Function enables Map<K, V> as Map<Integer, V> as Array<V> 
• h(): K -> Integer for any possible key K
• h() should distribute the keys uniformly over all integers
• if k1 and k2 are “close”, h(k1) and h(k2) should be “far” apart

Typically want to return a small integer, so that we can use it as an index 
into an array
• An array with 4B cells in not very practical if we only expect a few thousand 

to a few million entries
• How do we restrict an arbitrary integer x into a value up to some maximum 

value n?
0 <= x % n < n

Compression function: c(i) = abs(i) % length(a)
Transforms from a large range of integers to a small range (to store in array a)

Array[“Mike”] = 10; Array[“Peter”] = 15 BST:O(lg n) -> Hash:O(1)

Array[13] = 10; Array[42] = 15 O(1)



Where do we get keys from?



Collisions
Collisions occur when 2 different keys get mapped to the same value
• Within the hash function h(): 

• Rare, the probability of 2 keys hashing to the same value is 1/4B. 
• Within the compression function c(): 

• Common, 4B integers -> n values

a

0 1 2 3 4 5 6 7

Example: Hashing integers into an array with 8 cells
• h(i) = i
• c(i) = i % 8

insert(1, “Peter”): c(h(1)) = c(1) = 1

“Peter”



a

0 1 2 3 4 5 6 7

Example: Hashing integers into an array with 8 cells
• h(i) = i
• c(i) = i % 8

Insert(20, “Paul”): c(h(20)) = c(20) = 4

“Peter” “Paul”

Collisions
Collisions occur when 2 different keys get mapped to the same value
• Within the hash function h(): 

• Rare, the probability of 2 keys hashing to the same value is 1/4B. 
• Within the compression function c(): 

• Common, 4B integers -> n values



a

0 1 2 3 4 5 6 7

Example: Hashing integers into an array with 8 cells
• h(i) = i
• c(i) = i % 8

insert(15, “Mary”): c(h(15)) = c(15) = 7

“Peter” “Paul” “Mary”

Collisions
Collisions occur when 2 different keys get mapped to the same value
• Within the hash function h(): 

• Rare, the probability of 2 keys hashing to the same value is 1/4B. 
• Within the compression function c(): 

• Common, 4B integers -> n values



a

0 1 2 3 4 5 6 7

Example: Hashing integers into an array with 8 cells
• h(i) = i

• c(i) = i % 8

get(15): get(c(h(15))) = get(c(15)) = get(7) => “Mary”

“Peter” “Paul” “Mary”

Collisions
Collisions occur when 2 different keys get mapped to the same value
• Within the hash function h(): 

• Rare, the probability of 2 keys hashing to the same value is 1/4B. 

• Within the compression function c(): 

• Common, 4B integers -> n values

J
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Example: Hashing integers into an array with 8 cells
• h(i) = i

• c(i) = i % 8

has(4): has(c(h(4)) = has(c(4)) = has(4) => “Paul” 

“Peter” “Paul” “Mary”

Collisions
Collisions occur when 2 different keys get mapped to the same value
• Within the hash function h(): 

• Rare, the probability of 2 keys hashing to the same value is 1/4B. 

• Within the compression function c(): 

• Common, 4B integers -> n values

L



a

0 1 2 3 4 5 6 7

Example: Hashing integers into an array with 8 cells
• h(i) = i
• c(i) = i % 8

insert(4, “Beverly”): c(h(4)) = c(4) = 4

“Peter” “Paul” “Mary”
“Beverly”

Collisions
Collisions occur when 2 different keys get mapped to the same value
• Within the hash function h(): 

• Rare, the probability of 2 keys hashing to the same value is 1/4B. 
• Within the compression function c(): 

• Common, 4B integers -> n values

L
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0 1 2 3 4 5 6 7

Example: Hashing integers into an array with 8 cells
• h(i) = i

• c(i) = i % 8

Two problems caused by collisions:
False positives: How do we know the key is the one we want?

Collision Resolution: What do we do when 2 keys map to same location?

“Peter” “Paul” “Mary”

Collisions
Collisions occur when 2 different keys get mapped to the same value
• Within the hash function h(): 

• Rare, the probability of 2 keys hashing to the same value is 1/4B. 

• Within the compression function c(): 

• Common, 4B integers -> n values
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0 1 2 3 4 5 6 7

Example: Hashing integers into an array with 8 cells
• h(i) = i
• c(i) = i % 8

Two problems caused by collisions:
False positives: How do we know the key is the one we want?
Collision Resolution: What do we do when 2 keys map to same location?

(1,“Peter”) (20, “Paul”) (15, “Mary”)

Collisions
Collisions occur when 2 different keys get mapped to the same value
• Within the hash function h(): 

• Rare, the probability of 2 keys hashing to the same value is 1/4B. 
• Within the compression function c(): 

• Common, 4B integers -> n values



Separate chaining

a

0 1 2 3 4 5 6 7

Use Array<List<V>> instead of an Array<V> to store the entries

(1,“Peter”) (20, “Paul”) (15, “Mary”)

o o o

insert(4, “Beverly”): c(h(4)) = c(4) = 4



Separate chaining

a

0 1 2 3 4 5 6 7

Use Array<List<V>> instead of an Array<V> to store the entries

(1,“Peter”) (20, “Paul”) (15, “Mary”)

o o

insert(4, “Beverly”): c(h(4)) = c(4) = 4

(4, “Beverly”)

o



Separate chaining

a

0 1 2 3 4 5 6 7

Use Array<List<V>> instead of an Array<V> to store the entries

(1,“Peter”) (20, “Paul”) (15, “Mary”)

o o

Using separate chaining we could implement the Map<K,V> interface J

(4, “Beverly”)

o

Seems fast, but how fast do we expect it to be?



Separate Chaining Analysis
Assume the table has just 1 cell:

All n items will be in a linked list => O(n) insert/find/remove L

Assume table has m cells AND h() evenly distributes the keys
• Every cell is equally likely to be selected to store key k, so the n items

should be evenly distributed across m slots

• Average number of items per slot: n/m

• Also called the load factor (commonly written as α)

• Also the probability of a collision when inserting a new key

• Empty table: 0/m probability

• After 1
st

item: 1/m

• After 2
nd

item: 2/m

Assume the hash function h() always returns a constant value
All n items will be in a linked list => O(n) insert/find/remove L

Expected time for unsuccessful search:

Expected time for successful search:

O(1+n/m)

O(1+n/m/2) => O(1+n/m)

If n < c*m, then we can expect constant time! J



Next Steps

1. Work on HW7

2. Check on Piazza for tips & corrections!


