CS 600.226: Data Structures
Michael Schatz

==X

Nov 5,2018 @
Lecture 28. Hash Tables

HW7

Assignment 7:Whispering Trees
Out on: November 2,2018
Due by: November 9,2018 before 10:00 pm
Collaboration: None
Grading:
Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The seventh assignment is all about ordered maps, specifically fast ordered
maps in the form of balanced binary search trees. You'll work with a little
program called Words that reads text from standard input and uses an
(ordered) map to count how often different words appear.We're giving
you a basic (unbalanced) binary search tree implementation of
OrderedMap that you can use to play around with the Words program
and as starter code for your own developments.

Agenda

I. Recap on BST,AVL trees and Treaps

2. Hash Tables

Part |: BST

Binary Search Tree

SN TN
- CenaBSThawedwplcatevalues?

Searching

Constructing

1(7) 1(35) 1(8) i(1) 1(3) 1(4) 1(9)
empty —p 7 —> T —> 7 — 7 —_— 7 —_— 7 —_— 7
/ / \ / \ / \ / \ / \
5 5 8 5 8 5 8 5 8 5
/ / / /
1 1 1 1
\ \ \
3 3 3
\ \

Random Tree Height

Trying all permutations of 14 distinct keys

numtrees: 87,178,291,200 average height: 6.63

maxheights[0]:
maxheights[1]:
maxheights[2]:
maxheights[3]:
maxheights[4]:

maxheights[5]:
maxheights[6]:
maxheights[7]:

maxheights[8]:
maxheights[9]:

maxheights[10]:
maxheights[11]:
maxheights[12]:
maxheights[13]:
maxheights[14]:

oo O oo

21964800
10049994240
33305510656
27624399104
12037674752
3393895680
652050944
85170176
7258112
364544

8192

0.00%
0.00%
0.00%
0.00%
0.03%

11.53%
38.20%
31.69%
13.81%

3.89%
0.75%
0.10%
0.01%
0.00%
0.00%

7hrs 17m

Random Tree Height

Trying all permutations of 15 distinct keys

numtrees: 1,307,674,368,000 average height: 6.83

maxheights[0]:
maxheights[1]:
maxheights[2]:
maxheights[3]:
maxheights[4]:
maxheights[5]:
maxheights[6]:
maxheights[7]:
maxheights[8]:
maxheights[9]:

maxheights[10]:
maxheights[11]:
maxheights[12]:
maxheights[13]:
maxheights[14]:
maxheights[15]:

oo O oo

21964800
92644597760
450049847808
450900458496
223762187264
71589889024
15916504576
2496484352
271953920
19619840
843776

16384

0.00%
0.00%
0.00%
0.00%
0.00%
7.08%

34.42%
34.48%
17.11%

5.47%
1.22%
0.19%
0.02%
0.00%
0.00%
0.00%

5 days 22hrs 11min

Random Tree Height

Trying all permutations of 16 distinct keys

$ tail -20 heights.16.log

tree[96520000000]
tree[96521000000]
tree[96522000000]
tree[96523000000]
tree[96524000000]
tree[96525000000]
tree[96526000000]
tree[96527000000]
tree[96528000000]
tree[96529000000]
tree[96530000000]
tree[96531000000]
tree[96532000000]
tree[96533000000]
tree[96534000000]
tree[96535000000]

:1341011627814913 1516 12 5 maxheight:
:13410116138927 1514 12 5 16 maxheight:
11341011 615147132125 89 16 maxheight:
1341011 781213166 9 152 5 14 maxheight:
:13410117521296 15 14 8 13 16 maxheight:
1341011 714821551213 6 9 16 maxheight:
:134101171615926 13 8 5 12 14 maxheight:
:1341011891215137 514 6 2 16 maxheight:
1341011812213 16 157 9 14 5 6 maxheight:
11341011 815612914 13 7 16 2 5 maxheight:
1341011971528 136 14 12 5 16 maxheight:
:13410119213658127 14 15 16 maxheight:
:134101191321514 127 6 16 5 8 maxheight:
13410119168 1425156 12 13 7 maxheight:
:134101128151213 596 14 7 16 maxheight:
:13410112513615168 97 12 14 maxheight:

o

OO©COOO©OOCOC—D\QO©00©—\COOOOO

Only 95 more days to go ©

Part 2: AVL Trees

Balanced Trees

1l

2 3

/1

Maintaining Balance

Insert left, Insert right, Insert left, Insert right,
AVL Violation! Rebalanced Rebalanced AVL Violation!

Tree Rotations

right-rotation(B)

>
<€

left-rotation(A)

Complete Example

Insert these values: 457213

ins(5) ins(2)
/‘\ /\
4 4 5 5 5
/\
2 7
ins(7))< \y (
ins(1) / |ns(3)

1
1(2) C.
frat—— !

/

/

\

\

Part 3: Treaps

BSTs versus Heaps

SN/

BST

All keys in left subtree
of k are <k, all keys in
right are >k

Tricky to balance, but
fast to find

SN/

Heap

N\

All children of the node
with priority p have
priority 2p

Easy to balance, but
hard to find (except
min/max)

BSTs versus Heaps

/-
0

/3

==y P
_

11 1

\ 4 4

N

/N

BST

All keys in left subtree
of k are <k, all keys in
right are >k

Tricky to balance, but
fast to find

\

<

Heap

N\

All children of the node
with priority p have
priority =2p

Easy to balance, but
hard to find (except
min/max)

A treap is a binary search tree where the nodes have both user
specified keys (k) and internally assigned priorities (p).

When inserting, use standard BST insertion algorithm, but then
use rotations to iteratively move up the node while it has lower
priority than its parent (analogous to a heap, but with rotations)

A (better) example

Insert the following pairs: 7/3, 2/0, 1/7, 8/2, 3/9, 5/1, 4/7

7/3 2/0 2/0 2/0 2/0
. / \ / \ / \ / \
QHS(Z/O) 1/7 7/3 1/7 8/2 1/7 8/2 1/7 5/1
273) \ ! / /1 / 0\
/1 (7) 8/2 t 7/3 5/1 3/9 8/2
2/0 PO B ALy
s insed) P70 ins(a)’y,
r(7 '
l\(>)2/o 1/7 8/2 / 5/1 2/0 r(BQ 2/0 I3) 20
\ / /A /A /A
7/3 7/3 I3)1/7 8/2 1/7 5/1 1/7 5/1
ins(1/7) in&(3/9 /2/0\ / /N / \
in§(3/9) 7/3 3/9 8/2 4/7 8/2
/ 0\ / 5/1 7/3 3/9 7/3
1/7 7/3 7/3 /
/ 3/9
3/9

Notice that we inserted the same keys, but with different priorities

Just by changing the priorities, we can improve the balance!

Treap Reflections

/ Insert the following pairs: 7/1, 2/2, 1/3, 8/4, 3/5, 5/6, 4/7

7/1
/N
: S : 2/2 8/4
Since the priorities are in sorted order, becomes a 7\

standard BST and may have O(n) height 1/3 3/5
\

5/6
/

\ 4/17

~

/

/ Insert the following pairs: 7/3, 2/0, 1/7, 8/2, 3/9, 5/1, 4/7

With a standard BST, for 2 to be root it would have to be 2/0

the first key inserted, and 5 would have to proceed all 1/;
the other keys except 1, ... /
It is as if we saw the sequence: 4/17
2,5,8,7,1,4,3 /

3/9

Note priorities in sorted order:
\ 2/0, 5/1, 8/2/, 7/3, 1/7, 4/7, 3/9

\
5/1

\
8/2
/

7/3

<

/

What priorities should we assign to
maintain a balanced tree!

Math.random()

Using random priorities essentially shuffles the input data
(which might have bad linear height)

into a random permutation
that we expect to have O(log n) height
©

It is possible that we could randomly shuffle into a poor tree
configuration, but that is extremely rare.

In most practical applications, a treap will perform just fine, and will often
outperform an AVL tree that guarantees O(log n) height but has higher
constants

L

Self Balancing Trees

Understanding the distinction between different kinds of
balanced search trees:

AVL trees guarantee worst case O(log n) operations by carefully
accounting for the tree height

treaps guarantee expected O(log n) operations by selecting a
random permutation of the input data

splay trees guarantee amortized O(log n) operations by
periodically applying a certain set of rotations (see lecture notes)

If you have to play it safe and don’t trust your random numbers,
=> AVL trees are the way to go.

If you can live with the occasional O(n) op
=> gplay trees are the way to go.

And if you trust your random numbers
=> treaps are the way to go.

Part 4: Hash Tables

Maps
aka dictionaries
aka associative arrays

Mike -> Malone 323
Peter -> Malone 223
Joanne -> Malone 225
Zack -> Malone 160 suite
Debbie -> Malone 160 suite
Yair -> Malone 160 suite
Ron -> Garland 242

Key (of Type K) -> Value (of Type V)

Note you can have multiple keys with the same value,
But not okay to have one key map to more than 1 value

Maps, Sets, and Arrays

Sets as Map<T, Boolean> Array as Map<Iinteger, T>

Mike -> True 0 -> Mike

Peter -> True 1 -> Peter
Joanne -> True 2 -> Joanne
Zack -> True 3 -> Zack
Debbie -> True 4 -=> Debbie
Yair -> True 5 => Yair

Ron -> True 6 -> RoON

Maps are extremely flexible and powerful,
and therefore are extremely widely used

Built into many common languages: Awk, Python, Perl, JavaScript...

Could we do everything in O(Ig n) time or faster?
=> Balanced Search Trees

Maps, Sets, and Arrays

Sets as Map<T, Boolean> Array as Map<Iinteger, T>

Mike -> True 0 -> Mike

Peter -> True 1 -> Peter
Joanne -> True 2 -> Joanne
Zack -> True 3 -> Zack
Debbie -> True 4 -=> Debbie
Yair -> True 5 => Yair

Ron -> True 6 -> RoON

Maps are extremely flexible and powerful,
and therefore are extremely widely used

Built into many common languages: Awk, Python, Perl, JavaScript...

Could we do everything in O(lg n) ti
=> Balanced Search Trees

ADT:Arrays

0 1 2 n-3 n-2 n-1

a: | t t t t t t

get(2)
put(n-2, X)

Hashing

Array[13] = 10; Array[42] = 15 O(1)
Array[“Mike”] = 10; Array[“Peter”] = 15 BST:O(lg n) -> Hash:0O(1)

Hash Function enables Map<K, V> as Map<Integer, V> as Array<V>
* h(): K-> Integer for any possible key K

* h() should distribute the keys uniformly over all integers

« if ks and k, are “close”, h(k4) and h(k,) should be “far” apart

Typically want to return a small integer, so that we can use it as an index

into an array

* An array with 4B cells in not very practical if we only expect a few thousand
to a few million entries

« How do we restrict an arbitrary integer x into a value up to some maximum

value n?
0<=x%n<n

Compression function: c(i) = abs(i) % length(a)
Transforms from a large range of integers to a small range (to store in array a)

Where do we get keys from!?

O 00 B coictimPutionst7) x 4+

€ 5 C O @ hiwps/idocs.omche.comiavase/7/docy/apiievaiang/Object MmishashCode() Q # vmOopERDB®BOesDee OO
M B omwa oy O Y ¢ Dt OFBGCGEH * © Bon 3w E3vess Esnoe [) oot [) AmCookies [) Remove NYT Coo » BB Other Bookmanks
hashCode

public int hashCode()

Returns a hash code value for the object. This method is supported for the benefit of hash tables such as those provided by
HashMap.

The general contract of hashCode is:

« Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method
must consistently return the same integer, provided no information used in equals comparisons on the object is modified.
This integer need not remain consistent from one execution of an application to another execution of the same application.

« If two objects are equal according to the equals (Object) method, then calling the hashCode method on each of the two
objects must produce the same integer result.

« It is not required that if two objects are unequal according to the equals(java.lang.Object) method, then calling the
hashCode method on each of the two objects must produce distinct integer results, However, the programmer should be
aware that producing distinct integer results for unequal objects may improve the performance of hash tables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects.

(This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is
not required by the Java™ programming language.)

Returns:
a hash code value for this object.
See Also:

equals(java.lang.Object), System.identityHashCode(java.lang.Object)

Collisions

Collisions occur when 2 different keys get mapped to the same value

« Within the hash function h():
« Rare, the probability of 2 keys hashing to the same value is 1/4B.

« Within the compression function c():
« Common, 4B integers -> n values

Example: Hashing integers into an array with 8 cells
 h(i)=i
« ¢c(i)=1%38

“Peter”

insert(1, “Peter”): c(h(1)) = c(1) = 1

Collisions

Collisions occur when 2 different keys get mapped to the same value

« Within the hash function h():
« Rare, the probability of 2 keys hashing to the same value is 1/4B.

« Within the compression function c():
« Common, 4B integers -> n values

Example: Hashing integers into an array with 8 cells
 h(i)=i
« ¢c(i)=1%38

“Peter” “Paul’

Insert(20, “Paul”): c(h(20)) = ¢(20) = 4

Collisions

Collisions occur when 2 different keys get mapped to the same value

« Within the hash function h():
« Rare, the probability of 2 keys hashing to the same value is 1/4B.

« Within the compression function c():
« Common, 4B integers -> n values

Example: Hashing integers into an array with 8 cells
 h(i)=i

« ¢c(i)=i%38
0 1 2 3 4 5 6 7
a
] | |
Vv v 1§
“Peter” “Paul” “Mary”

insert(15, “Mary”): c(h(15)) = c(15) =7

Collisions

Collisions occur when 2 different keys get mapped to the same value

« Within the hash function h():
« Rare, the probability of 2 keys hashing to the same value is 1/4B.

« Within the compression function c():
« Common, 4B integers -> n values

Example: Hashing integers into an array with 8 cells
 h(i)=i

¢ c(i)=i%8
0 1 2 3 4 5 6 7
d
| | |
v A4 v
“Peter’ “Paul’ “Mary"

get(15): get(c(h(15))) = get(c(15)) = get(7) => “Mary” ©

Collisions

Collisions occur when 2 different keys get mapped to the same value

« Within the hash function h():
« Rare, the probability of 2 keys hashing to the same value is 1/4B.

« Within the compression function c():
« Common, 4B integers -> n values

Example: Hashing integers into an array with 8 cells
 h(i)=i

« ¢c(i)=i%38
0 1 2 3 4 5 6 7
a
] | |
Vv v 1§
“Peter” “Paul” “Mary”

has(4): has(c(h(4)) = has(c(4)) = has(4) => “Paul” ®

Collisions

Collisions occur when 2 different keys get mapped to the same value

« Within the hash function h():
« Rare, the probability of 2 keys hashing to the same value is 1/4B.

« Within the compression function c():
« Common, 4B integers -> n values

Example: Hashing integers into an array with 8 cells
 h(i)=i

« c(i)=i1% 8
0 1 2 3 4 5 6 7
a
] |
v Ry
“Peter” “Mary”

insert(4, “Beverly”): c(h(4)) =c(4)=4 O

Collisions

Collisions occur when 2 different keys get mapped to the same value

« Within the hash function h():
« Rare, the probability of 2 keys hashing to the same value is 1/4B.

« Within the compression function c():
« Common, 4B integers -> n values

Example: Hashing integers into an array with 8 cells
 h(i)=i

¢ c(i)=i%8
0 1 2 3 4 5 6 7
d
| | |
v A4 v
“Peter’ “Paul’ “Mary"

Two problems caused by collisions:
False positives: How do we know the key is the one we want?
Collision Resolution: What do we do when 2 keys map to same location?

Collisions

Collisions occur when 2 different keys get mapped to the same value

« Within the hash function h():
« Rare, the probability of 2 keys hashing to the same value is 1/4B.

« Within the compression function c():
« Common, 4B integers -> n values

Example: Hashing integers into an array with 8 cells
 h(i)=i

.+ c(i)=i1%8
0 1 2 3 4 5 6 7
a
I | |
v v v
(1 “Peter’) (20, “Paul’) (15, “Mary”)

Two problems caused by collisions:
False positives: How do we know the key is the one we want?
Collision Resolution: What do we do when 2 keys map to same location?

Separate chaining

Use Array<List<V>> instead of an Array<V> to store the entries

0 1 2 3 4 5 6 7
a
| | |
v ¥ ~
(1,“Peter”) (20, “Paul’) (15, "Mary’)
¥ \ g N
(0] o O

insert(4, “Beverly”): c(h(4)) = c(4) =4

Separate chaining

Use Array<List<V>> instead of an Array<V> to store the entries

0 1 2 3 4 5 6 7
d
I | |
v Vv U
(1,“Peter”) (20, “Paul’) (15, "Mary”)
it U U
o (4, “Beverly”) o)
U
0]

insert(4, “Beverly”): c(h(4)) = c(4) =4

Separate chaining

Use Array<List<V>> instead of an Array<V> to store the entries

0 1 2 3 4 5 6 7
a
I | |
v v e
(1,“Peter”) (20, “Paul”) (15, “Mary”)
W U Vv
o (4, “Beverly”) o)
v
o)

Using separate chaining we could implement the Map<K,V> interface ©

Seems fast, but how fast do we expect it to be?

Separate Chaining Analysis

Assume the table has just 1 cell:
All n items will be in a linked list => O(n) insert/find/remove ®

Assume the hash function h() always returns a constant value
All n items will be in a linked list => O(n) insert/find/remove ®

Assume table has m cells AND h() evenly distributes the keys
« Every cell is equally likely to be selected to store key k, so the n items
should be evenly distributed across m slots
« Average number of items per slot: n/m
« Also called the load factor (commonly written as a)
« Also the probability of a collision when inserting a new key
« Empty table: O/m probability
« After 1stitem: 1/m
« After 2" item: 2/m

Expected time for unsuccessful search: O(1+n/m)

Expected time for successful search: O(1+n/m/2) => O(1+n/m)

If n < ¢c*m, then we can expect constant time! ©

Next Steps

l. Work on HW7

2. Check on Piazza for tips & corrections!

