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HW6

Assignment 6: Setting Priorities
Out on: October 26, 2018
Due by: November 2, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The sixth assignment is all about sets, priority queues, and various forms 
of experimental analysis aka benchmarking. You'll work a lot with jaybee as 
well as with new incarnations of the old Unique program. Think of the 
former as "unit benchmarking" the individual operations of a data 
structure, think of the latter as "system benchmarking" a complete (albeit 
small) application.



HW7

Assignment 7: Whispering Trees
Out on: November 2, 2018
Due by: November 9, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The seventh assignment is all about ordered maps, specifically fast ordered 
maps in the form of balanced binary search trees.  You'll work with a little 
program called Words that reads text from standard input and uses an 
(ordered) map to count how often different words appear. We're giving 
you a basic (unbalanced) binary search tree implementation of 
OrderedMap that you can use to play around with the Words program 
and as starter code for your own developments.



Agenda
1. Recap on BSTs and AVL Trees

2. Treaps



Part 1: Binary Search Tree



Binary Search Tree

<k

A BST is a binary tree with a special ordering property:
If a node has value k, then the left child (and its descendants) will have 
values smaller than k; and the right child (and its descendants) will have 

values greater than k

>k

k

Can a BST have duplicate values?



Searching

has(7):

has (2):

What is the runtime for has() ?

compare 6 => compare 8 => found 7

compare 6 => compare 4 => compare 1 => not found!



Constructing

Note the shape of a general BST will depend on the order of insertions

empty 7 7
/
5

7
/ \
5   8

7
/ \
5   8
/
1

7
/ \
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/
1
\
3

7
/ \
5   8
/
1
\
3
\
4

7
/ \
5   8
/     \
1       9
\
3
\
4

i(7) i(5) i(8) i(1) i(3) i(4) i(9)

What is the “worst” order for constructing the BST?

What is the “best” order for constructing the BST?

What happens for a random ordering?



Removing

Remove 
leaf 

is easy

6
/   \
3     8
/ \ /  \
1   4 7    9

6
/   \
3     8
/ \ \
1   4     9

6
/   \
3     9
/ \
1   4  

r(7) r(8) r(6)

Remove 
with only
one child 

Is easy

Remove
internal
node

?



Binary Search Tree

<k >k

k

Where is k’s immediate predecessor?
Where is k’s immediate successor?



Binary Search Tree

<k >k

k

Where is k’s immediate predecessor?
Where is k’s immediate successor?

The predecessor is the 
rightmost node in the left 
subtree

The successor is the 
leftmost node in the right 
subtree



Binary Search Tree

<k >k

k

Where is k’s immediate predecessor?
Where is k’s immediate successor?

Swapping the predecessor with root is 
good because:
1) The ordering of the tree is preserved
2) The predecessor has zero or 1 child 

• It cant have 2 children or it is not 
the predecessor (that right child 
is bigger)

The predecessor is the 
rightmost node in the left 
subtree



Removing

Remove 
leaf 

is easy

6
/   \
3     8
/ \ /  \
1   4 7    9

6
/   \
3     8
/ \ \
1   4     9

6
/   \
3     9
/ \
1   4  

7 8 6

Remove 
with only
one child 

Is easy

Remove
internal
node

?

1. Find k’s successor (or predecessor) and swap values with k
2.  Remove the node we got that key from (easy, since it has at most one child)

4
/   \
3     9
/     
1     

9
/   
3     
/ \
1   4    

or



BinarySearchTreeMap (1)

import java.util.Iterator;

public class BinarySearchTreeMap<K extendsComparable<K>,V>
implements OrderedMap<K, V> {

private static class Node<K, V> { 
Node<K, V> left, right;
K key; 
V value ;
Node(K k,V v){ 

this.key = k;
this.value =v; 

}
}

private Node<K, V> root;

public boolean has(K k) { 
return this.find(k) != null;

}

Static nested class
Sometimes convenient 
to use child[0] and 
child[1]

has() calls 
find()

6
/   \
3     9
/ \
1   4  



BinarySearchTreeMap (2)
private Node<K, V> find(K k) { 

Node<K, V> n = this.root; 
while (n != null) {

int cmp = k.compareTo(n.key); 
if (cmp < 0){

n = n.left;
} else if (cmp > 0){

n = n.right;
} else { 

return n;
} 

}
return null; 

}

public void put(K k, V v) throws UnknownKeyException { 
Node<K, V> n = this.findForSure(k);
n.value = v;

}

public V get (K k) throws UnknownKeyException { 
Node<K, V> n = this.findForSure(k);
return n.value;

}

find() iteratively 
walks the tree, 
returns null if 
not found

put()/get() use a 
special 
findForSure() 
method

6
/   \
3     9
/ \
1   4  



BinarySearchTreeMap (3)
private Node<K, V> findForSure(K k) throws UnknownKeyException {

Node<K, V> n = this.find(k); 
if (n == null) {

throw new UnknownKeyException(); 
}
return n; 

}

public void insert (K k, V v) throws DuplicateKeyException{ 
this.root = this.insert(this.root, k, v);

}

private Node<K, V> insert(Node<K, V> n, K k, V v) { 
if (n == null) {

return new Node<K, V>(k, v); 
}
int cmp = k.compareTo(n.key); 
if (cmp < 0){

n.left = this.insert(n.left, k, v); 
} else if (cmp > 0){

n.right = this.insert(n.right, k, v); 
} else {

throw new DuplicateKeyException(); 
}
return n; 

}

Just like find() but 
throws exception if 
not there

Recurse to right spot, 
add the new node, 
and return the 
modified tree after 
insert is complete

(n.left or n.right may 
be reset to same 
value for nodes that 
don’t change)

6
/   \
3     9
/ \
1   4  



BinarySearchTreeMap (4)

public V remove(K k) throws UnknownKeyException { 
V value = this.get(k);
this.root = this.remove(this.root, k); 
return value;

}

private Node<K, V> remove(Node<K, V> n, K k) throws UnknownKeyException {
if (n == null) {

throw new UnknownKeyException();
}

int cmp = k.compareTo(n.key); 

if (cmp < 0){
n.left = this.remove(n.left , k); 

} else if (cmp > 0){
n.right = this.remove(n.right, k); 

} else {
n = this.remove(n); 

}

return n; 
}

Recurse to right spot, 
then call the 
overloaded private 
remove() function

First get() it so we 
can return the value, 
then actually remove

6
/   \
3     9
/ \
1   4  



BinarySearchTreeMap (5)

private Node<K, V> remove(Node<K, V> n) { 
// 0 and 1 child
if (n.left == null) { 

return n.right;
}

if (n.right == null) {
return n.left; 

}

// 2 children
Node<K, V> max = this.max(n.left);
n.left = this.removeMax(n.left); 
n.key = max.key;
n.value = max.value;
return n;

}

private Node<K, V> max(Node<K, V> n) { 
while (n.right != null) {

n = n.right ;
}
return n; 

}

Easy cases

Find the max of the 
subtree rooted on the 
left child -> its 
predecessor

Just keep walking 
right as far as you 
can

6
/   \
3     9
/ \
1   4  



BinarySearchTreeMap (6)
private Node<K, V> removeMax(Node<K, V> n) { 

if (n.right == null) {
return n.left; 

}
n.right = removeMax(n.right);
return n; 

}

public Iterator <K> iterator () { 
return null;

}

public String toString () {
return this.toStringHelper(this.root);

}

private String toStringHelper (Node<K, V> n) { 
String s = "(";
if (n != null) {

s += this.toStringHelper(n.left); 
s += "" + n.key + ": " + n.value; 
s += this . toStringHelper (n.right);

}
return s + ")"; 

}

Fix the pointers to 
maintain BST 
invariant

Flush out rest of 
class: recursively 
traverse the tree to 
fill up an 
ArrayList<K> and 
return its iterator J

6
/   \
3     9
/ \
1   4  



Binary Search
What if we miss the median and do a 90/10 split instead?

n

[How many times can we cut 10% off a list?]

n/10 + 9n/10 < >

... + 81n/100< >

< > ... + 729n/1000

< … + 6561n/10000>

< > … + 59049n/100000

< > … + 531441n/1000000

< > … + 4782969n/10000000

…+ 9in/10i



Random Tree Height

## Trying all permutations of 3 distinct keys

$ cat heights.3.log
tree[0]: 1 2 3 maxheight: 3
tree[1]: 1 3 2 maxheight: 3
tree[2]: 2 1 3 maxheight: 2
tree[3]: 2 3 1 maxheight: 2
tree[4]: 3 2 1 maxheight: 3
tree[5]: 3 1 2 maxheight: 3

numtrees: 6 average height: 2.66

maxheights[0]: 0      0.00%
maxheights[1]: 0      0.00%
maxheights[2]: 2      33.33%
maxheights[3]: 4      66.67%



Random Tree Height
$ cat heights.4.log
tree[0]: 1 2 3 4 maxheight: 4
tree[1]: 1 2 4 3 maxheight: 4
tree[2]: 1 3 2 4 maxheight: 3
tree[3]: 1 3 4 2 maxheight: 3
tree[4]: 1 4 3 2 maxheight: 4
tree[5]: 1 4 2 3 maxheight: 4
tree[6]: 2 1 3 4 maxheight: 3
tree[7]: 2 1 4 3 maxheight: 3
tree[8]: 2 3 1 4 maxheight: 3
tree[9]: 2 3 4 1 maxheight: 3
tree[10]: 2 4 3 1 maxheight: 3
tree[11]: 2 4 1 3 maxheight: 3
tree[12]: 3 2 1 4 maxheight: 3
tree[13]: 3 2 4 1 maxheight: 3
tree[14]: 3 1 2 4 maxheight: 3
tree[15]: 3 1 4 2 maxheight: 3
tree[16]: 3 4 1 2 maxheight: 3
tree[17]: 3 4 2 1 maxheight: 3
tree[18]: 4 2 3 1 maxheight: 3
tree[19]: 4 2 1 3 maxheight: 3
tree[20]: 4 3 2 1 maxheight: 4
tree[21]: 4 3 1 2 maxheight: 4
tree[22]: 4 1 3 2 maxheight: 4
tree[23]: 4 1 2 3 maxheight: 4

## Trying all permutations of 4 distinct keys

numtrees: 24 average height: 3.33

maxheights[0]: 0      0.00%
maxheights[1]: 0      0.00%
maxheights[2]: 0      0.00%
maxheights[3]: 16     66.67%
maxheights[4]: 8      33.33%



Random Tree Height

## Trying all permutations of 5 distinct keys

numtrees: 120 average height: 3.80

maxheights[0]: 0      0.00%
maxheights[1]: 0      0.00%
maxheights[2]: 0      0.00%
maxheights[3]: 40     33.33%
maxheights[4]: 64     53.33%
maxheights[5]: 16     13.33%



Random Tree Height

## Trying all permutations of 10 distinct keys

numtrees: 3,628,800 average height: 5.64

maxheights[0]: 0      0.00%
maxheights[1]: 0      0.00%
maxheights[2]: 0      0.00%
maxheights[3]: 0      0.00%
maxheights[4]: 253440 6.98%
maxheights[5]: 1508032 41.56%
maxheights[6]: 1277568 35.21%
maxheights[7]: 479040 13.20%
maxheights[8]: 99200  2.73%
maxheights[9]: 11008  0.30%
maxheights[10]: 512    0.01%



Random Tree Height

## Trying all permutations of 11 distinct keys

numtrees: 39,916,800 average height: 5.91

maxheights[0]: 0      0.00%
maxheights[1]: 0      0.00%
maxheights[2]: 0      0.00%
maxheights[3]: 0      0.00%
maxheights[4]: 1056000 2.65%
maxheights[5]: 13501312       33.82%
maxheights[6]: 15727232       39.40%
maxheights[7]: 7345536 18.40%
maxheights[8]: 1950080 4.89%
maxheights[9]: 308480 0.77%
maxheights[10]: 27136  0.07%
maxheights[11]: 1024   0.00%



Random Tree Height

## Trying all permutations of 12 distinct keys

numtrees: 479,001,600 average height: 6.17

maxheights[0]: 0      0.00%
maxheights[1]: 0      0.00%
maxheights[2]: 0      0.00%
maxheights[3]: 0      0.00%
maxheights[4]: 3801600 0.79%
maxheights[5]: 121362560      25.34%
maxheights[6]: 197163648      41.16%
maxheights[7]: 112255360      23.44%
maxheights[8]: 36141952       7.55%
maxheights[9]: 7293440 1.52%
maxheights[10]: 915456 0.19%
maxheights[11]: 65536  0.01%
maxheights[12]: 2048   0.00%



Random Tree Height

## Trying all permutations of 13 distinct keys

numtrees: 6,227,020,800 average height: 6.40

maxheights[0]: 0      0.00%
maxheights[1]: 0      0.00%
maxheights[2]: 0      0.00%
maxheights[3]: 0      0.00%
maxheights[4]: 10982400       0.18%
maxheights[5]: 1099169280     17.65%
maxheights[6]: 1764912384    28.34%
maxheights[7]: 1740445440     27.95%
maxheights[8]: 658214144      10.57%
maxheights[9]: 159805184      2.57%
maxheights[10]: 25572352       0.41%
maxheights[11]: 2617344 0.04%
maxheights[12]: 155648 0.00%
maxheights[13]: 4096   0.00%



Random Tree Height

## Trying all permutations of 14 distinct keys

numtrees: 87,178,291,200 average height: 6.63

maxheights[0]: 0 0.00%
maxheights[1]: 0 0.00%
maxheights[2]: 0 0.00%
maxheights[3]: 0 0.00%
maxheights[4]: 21964800 0.03%
maxheights[5]: 10049994240 11.53%
maxheights[6]: 33305510656 38.20%
maxheights[7]: 27624399104 31.69%
maxheights[8]: 12037674752 13.81%
maxheights[9]: 3393895680 3.89%
maxheights[10]: 652050944 0.75%
maxheights[11]: 85170176 0.10%
maxheights[12]: 7258112 0.01%
maxheights[13]: 364544 0.00%
maxheights[14]: 8192 0.00%



Random Tree Height
## Trying all permutations of 15 distinct keys

…
tree[44218000000]: 1 9 4 7 13 8 15 12 5 3 6 14 10 11 2 maxheight: 6
tree[44219000000]: 1 9 4 7 13 11 5 6 2 14 10 3 8 12 15 maxheight: 6
tree[44253000000]: 1 9 4 8 11 15 10 13 7 2 5 12 3 14 6 maxheight: 7
tree[44254000000]: 1 9 4 8 12 3 6 11 5 15 2 14 10 7 13 maxheight: 6
tree[44255000000]: 1 9 4 8 12 10 15 2 7 14 6 13 11 5 3 maxheight: 7
tree[44256000000]: 1 9 4 8 12 13 6 3 11 14 2 5 7 10 15 maxheight: 6
tree[44257000000]: 1 9 4 8 13 6 10 14 3 5 12 2 15 11 7 maxheight: 6
tree[44258000000]: 1 9 4 8 13 2 3 5 10 12 14 7 11 6 15 maxheight: 7
tree[44259000000]: 1 9 4 8 13 11 15 6 5 12 3 10 2 14 7 maxheight: 6
tree[44260000000]: 1 9 4 8 13 14 5 10 2 11 12 6 15 3 7 maxheight: 7
tree[44261000000]: 1 9 4 8 14 7 11 3 12 10 5 13 6 2 15 maxheight: 7
tree[44262000000]: 1 9 4 8 14 10 3 5 15 6 11 12 13 7 2 maxheight: 7
tree[44263000000]: 1 9 4 8 14 12 15 13 10 7 6 5 2 11 3 maxheight: 7
tree[44264000000]: 1 9 4 8 14 15 13 11 7 5 10 2 3 12 6 maxheight: 7
tree[44265000000]: 1 9 4 8 15 3 11 10 2 14 7 12 13 6 5 maxheight: 7
…



Part 2: AVL Trees



Balanced Trees
Note that we cannot require a BST to be perfectly balanced:

1 2
/
1

1
\
2

3
/
2
/
1

3
/
1
\
2 

2
/ \
1 3

1
\
3
/
2

1
\
2
\
3

Ba
la

nc
ed

N
ot

 B
al

an
ce

d

N
ot

 B
al

an
ce

d

N
ot

 B
al

an
ce

d

N
ot

 B
al

an
ce

d

Ba
la

nc
ed

N
ot

 B
al

an
ce

d

N
ot

 B
al

an
ce

d

Since neither tree with 2 keys is perfectly balanced we cannot insist on it

AVL Condition: 
For every node n, the height of n’s left and right subtree’s differ by at most 1



Maintaining Balance
Assume that the tree starts in a slightly unbalanced state:

h+1 h

k

< >
h h+1

k

< >

Woohoo! AVL Violations ;-)

Insert left,
AVL Violation!

Insert right,
Rebalanced

Insert left,
Rebalanced

Insert right,
AVL Violation!

h+2 h

k

< >
h+1 h+1

k

< >
h+1 h+1

k

< >
h h+2

k

< >

Inserting a new value can maintain the subtree heights or 1 of 4 possible outcomes:



Tree Rotations

>A
>B

B

>A
<B

<A
<B

A

<A
<B

A

>A
<B

>A
>B

B

Note: Rotating a BST maintains the BST condition!

Green < A < Brown < B < Purple

right-rotation(B)

left-rotation(A)



Complete Example
Insert these values: 4 5 7 2 1 3

4 4
\
5

4
\
5
\
7

5
/ \

4   7

5
/ \

4   7
/

2 5
/ \

4   7
/

2
/

1

5
/ \

2   7
/ \

1   4 5
/ \

2   7
/ \

1   4
/

3

5
/ \

4   7
/ 

2   
/ \

1   3 

4
/ \

2   5
/ \ \

1   3   7

ins(5)

ins(7)

ins(2)

ins(1) ins(3)

l(4)

r(4)

l(2) r(5)

Note: 
AVL Violations are fixed bottom up



Removing

Remove 
leaf 

is easy

6
/   \
3     8
/ \ /  \
1   4 7    9

6
/   \
3     8
/ \ \
1   4     9

6
/   \
3     9
/ \
1   4  

7 8 6

Remove 
with only
one child 

Is easy

Remove
Internal Node: 

Swap with 
predecessor
/successor

4
/   \
3     9
/     
1     

9
/   
3     
/ \
1   4    

or

Remove from AVL just like removing from regular BST:
Find successor 
Swap with that element, 
Remove the node that you just swapped.

Make sure to update the height fields, and rebalance if necessary



AVL Tree Balance
By construction, an AVL tree can never become “too unbalanced”
•AVL condition ensures left and right children differ by at most 1
•But they arent necessarily “full”

n=1 n=2 n=3 n=4 n=5

n=6 n=7



Sparse AVL Trees
How many nodes are in the sparsest AVL tree of height h
• Sparse means fewest nodes with height h
• Does it still include an exponential number of nodes?

S1

h=1
n=1

S2

h=2
n=2

S3

h=3
n=4

S4

h=4
n=7

S5

h=5
n=12



Sparse AVL Trees
How many nodes are in the sparsest AVL tree of height h
• Sparse means fewest nodes with height h
• Does it still include an exponential number of nodes?

S1

h=1
n=1

S1 = 1

S2

h=2
n=2

S2 = 2

S3

h=3
n=4

S3 = S2 + S1 + 1

S4

h=4
n=7

S4 = S3 + S2 + 1

S5

h=5
n=12

S5 = S4 + S3 + 1

Sh = Sh-1 + Sh-2 + 1



Fibonacci Sequence

f(1) f(0)

f(2) f(1) f(1) f(0) f(1) f(0) f(1) f(0)

f(4) f(3) f(3) f(2)

f(3) f(2) f(2) f(1) f(2) f(1) f(1) f(0)

F(6)

f(5) f(4)

public static int fib(int n) {
if (n <= 1) {
return 1;

}
return fib(n-1) +

fib(n-2);
}



Nodes in an AVL Tree
How many nodes are in the sparsest AVL tree of height h
• Sparse means fewest nodes with height h

• Does it still include an exponential number of nodes?

S(h) = F(h + 3) − 1

Fibonacci grows exponentially at φn

AVL Trees grow exponentially at φn-1

Therefore the height of any AVL tree is O(lg n)



Implementation Notes

• Rotations can be applied in constant time!
• Inserting a node into an AVL tree requires O(lg n) time and 

guarantees O(lg(n)) height

• Track the height of each node as a separate field
• The alternative is to track when the tree is lopsided, but just as 

hard and more error prone
• Don’t recompute the heights from scratch, it is easy to compute 

but requires O(n) time!
• Since we are guaranteeing the tree will have height lg(n), just use 

an integer
• Only update the affected nodes

Check out Appendix B for some very useful tips 
on hacking AVL trees!



Sample Application

https://visualgo.net/bst



Part 3: Treaps



BSTs versus Heaps

<k >k

k

≥p ≥p

p

≤p

BST

All keys in left subtree 
of k are < k, all keys in 
right are >k

Tricky to balance, but 
fast to find

Heap

All children of the node 
with priority p have 
priority ≥p

Easy to balance, but 
hard to find (except 
min/max)



BSTs versus Heaps

<k >k

k

≥p ≥p

p

≤p

BST

All keys in left subtree 
of k are < k, all keys in 
right are >k

Tricky to balance, but 
fast to find

Heap

All children of the node 
with priority p have 
priority ≥p

Easy to balance, but 
hard to find (except 
min/max)



Treap

<k
/p

>k
/p

k/p

A treap is a binary search tree where the nodes have both user 
specified keys (k) and internally assigned priorities (p).

When inserting, use standard BST insertion algorithm, but then 
use rotations to iteratively move up the node while it has lower 
priority than its parent (analogous to a heap, but with rotations)



A (boring) example

7/1

Insert the following pairs: 7/1, 2/2, 1/3, 8/4, 3/5, 5/6, 4/7

7/1
/

2/2

7/1
/

2/2
/

1/3

7/1
/   \

2/2   8/4
/

1/3

7/1
/   \

2/2   8/4
/ \

1/3 3/5

7/1
/   \

2/2   8/4
/ \

1/3 3/5
\
5/6

7/1
/   \

2/2   8/4
/ \

1/3 3/5
\
5/6
/

4/7

The priorities were always increasing, so we never had to apply 
any of the rotations…. boooooring and unbalanced



A (better) example

7/3

Insert the following pairs: 7/3, 2/0, 1/7, 8/2, 3/9, 5/1, 4/7

Notice that we inserted the same keys, but with different priorities

7/3
/!

2/0

ins(2/0)

2/0
/   \

1/7   7/3

ins(1/7)

l(7)

2/0
/   \

1/7   8/2
/

7/3
2/0

/   \
1/7   8/2

/
7/3
/

3/9

ins(3/9)

r(7)
2/0

\
7/3

2/0
/   \

1/7   7/3
\!
8/2

ins(8/2)

2/0
/   \

1/7   8/2
/

7/3
/

3/9
\!
5/1

ins(5/1)

2/0
/   \

1/7   8/2
/

7/3
/!

5/1
/  

3/9

l(3)

2/0
/   \

1/7   8/2
/!

5/1
/  \

3/9  7/3
r(7)

2/0
/   \

1/7   5/1
/ \

3/9  8/2
/

7/3

r(8)

2/0
/   \

1/7   5/1
/   \

3/9     8/2
\!    /

4/7  7/3
ins(4/7)

2/0
/   \

1/7   5/1
/   \

4/7     8/2
/      /

3/9    7/3

l(3)

Just by changing the priorities, we can improve the balance!



Treap Reflections

Insert the following pairs:  7/3, 2/0, 1/7, 8/2, 3/9, 5/1, 4/7

Insert the following pairs: 7/1, 2/2, 1/3, 8/4, 3/5, 5/6, 4/7 7/1
/   \

2/2   8/4
/ \

1/3 3/5
\
5/6
/

4/7

2/0
/   \

1/7   5/1
/   \

4/7     8/2
/      /

3/9    7/3

Since the priorities are in sorted order, becomes a 
standard BST and may have O(n) height

With a standard BST, for 2 to be root it would have to be 
the first key inserted, and 5 would have to proceed all 

the other keys except 1, …
It is as if we saw the sequence: 

2,5,8,7,1,4,3
Note priorities in sorted order: 
2/0, 5/1, 8/2/, 7/3, 1/7, 4/7, 3/9



What priorities should we assign to 
maintain a balanced tree?

Math.random()

Using random priorities essentially shuffles the input data 
(which might have bad linear height) 

into a random permutation 
that we expect to have O(log n) height 

J

It is possible that we could randomly shuffle into a poor tree 
configuration, but that is extremely rare. 

In most practical applications, a treap will perform just fine, and will often 
outperform an AVL tree that guarantees O(log n) height but has higher 

constants



Self Balancing Trees
Understanding the distinction between different kinds of 

balanced search trees: 

• AVL trees guarantee worst case O(log n) operations by carefully
accounting for the tree height

• treaps guarantee expected O(log n) operations by selecting a
random permutation of the input data

• splay trees guarantee amortized O(log n) operations by
periodically applying a certain set of rotations (see lecture notes)

If you have to play it safe and don’t trust your random numbers,
=> AVL trees are the way to go.

If you can live with the occasional O(n) op
=> splay trees are the way to go.

And if you trust your random numbers
=> treaps are the way to go.



Next Steps

1. Work on HW7

2. Check on Piazza for tips & corrections!


