CS 600.226: Data Structures
Michael Schatz

Nov 2,2018
Lecture 27.Treaps

HW6

Assignment 6: Setting Priorities
Out on: October 26,2018
Due by: November 2,208 before 10:00 pm
Collaboration: None
Grading:
Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The sixth assighment is all about sets, priority queues, and various forms
of experimental analysis aka benchmarking.You'll work a lot with jaybee as
well as with new incarnations of the old Unique program.Think of the
former as "unit benchmarking" the individual operations of a data

I structure, think of the latter as "system benchmarking" a complete (albeit

small) application.

HW7

Assignment 7:Whispering Trees
Out on: November 2,2018
Due by: November 9,2018 before 10:00 pm
Collaboration: None
Grading:
Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The seventh assignment is all about ordered maps, specifically fast ordered
maps in the form of balanced binary search trees. You'll work with a little
program called Words that reads text from standard input and uses an

(ordered) map to count how often different words appear.We're giving
you a basic (unbalanced) binary search tree implementation of
OrderedMap that you can use to play around with the Words program
and as starter code for your own developments.

Agenda

I. Recap on BSTs and AVL Trees

2. Treaps

Part |: Binary Search Tree

Binary Search Tree

SN TN
~ CenaBSThaedwploatevalues?

Searching

Constructing

Removing

Binary Search Tree

Binary Search Tree

The predecessor is the The successor is the
rightmost node in the left leftmost node in the right
subtree subtree

Binary Search Tree

Swapping the predecessor with root is

good because:

1) The ordering of the tree is preserved

2) The predecessor has zero or 1 child

« It cant have 2 children or it is not
the predecessor (that right child

is bigger)

The predecessor is the
rightmost node in the left
subtree

Removing

BinarySearchTreeMap (I)

import java.util.Iterator;

6

/ \

public class BinarySearchTreeMap<K extendsComparable<K>,6 V>
implements OrderedMap<K, V> {

private static class Node<K, V> {
Node<K, V> left, right;
K key;
V value ;
Node (K k,V v){
this.key = k;
this.value =v;

}

private Node<K, V> root;

public boolean has(K k) {
return this.find(k) != null;

}

Static nested class
Sometimes convenient
to use child[0] and
child[1]

has() calls
find()

9

6

BinarySearchTreeMap (2)

/ \

9

private Node<K, V> find(K k) {
Node<K, V> n = this.root;

while (n != null) { find() iteratively
int cmp = k.compareTo(n.key); walks the tree,
if (emp < 0){ returns null if

n = n.left;

} else if (cmp > 0){
n = n.right;

} else {
return n;

not found

}

}

return null;

}

public void put(K k, V v) throws UnknownKeyException {
Node<K, V> n = this.findForSure(k);
n.value = v;

}

public V get (K k) throws UnknownKeyException { pUt()/.get() use a
Node<K, V> n = this.findForSure(k); special
return n.value; findForSure()

} method

. 6
BinarySearchTreeMap (3) /"
3 9
/ \
private Node<K, V> findForSure(K k) throws UnknownKeyException {1 4
Node<K, V> n = this.find(k);
1t (n == null) | _ Just like find() but
throw new UnknownKeyException(); . .
} throws exception if
return n; not there
}
public void insert (K k, V v) throws DuplicateKeyException{
this.root = this.insert(this.root, k, v);
}
private Node<K, V> insert(Node<K, V> n, K k, V v) {
if (n == null) { Recurse to right spot,
return new Node<K, V>(k, v); add the new node
} J
int cmp = k.compareTo(n.key); ancirgh1n1the
if (cmp < 0){ modified tree after

n.left = this.insert(n.left, k, v); insert is complete
} else if (cmp > 0){
n.right = this.insert(n.right, k, v);

b oelsa (n.left or n.right may
throw new DuplicateKeyException(); be reset to same

} value for nodes that

return n;

don’t change)

6

BinarySearchTreeMap (4)

/ \
1 4

9

public V remove(K k) throws UnknownKeyException { First get() it so we
V value = this.get(k);
this.root = this.remove(this.root, k); can return the value,
return value; then actually remove

}

private Node<K, V> remove(Node<K, V> n, K k) throws UnknownKeyException {
if (n == null) {
throw new UnknownKeyException();

}

int cmp = k.compareTo(n.key);

if (cmp < 0){

n.left = this.remove(n.left , k);
} else if (cmp > 0){

n.right = this.remove(n.right, k);

} else {
n = this.remove(n); .
} Recurse to right spot,
then call the
return n; overloaded private
d remove() function

BinarySearchTreeMap (5) .

private Node<K, V> remove(Node<K, V> n) {
// 0 and 1 child
if (n.left == null) {
return n.right;

}

if (n.right == null) {
return n.left;

}

// 2 children

Node<K, V> max = this.max(n.left);
n.left = this.removeMax(n.left);
n.key = max.key;

n.value = max.value;

return n;

}

private Node<K, V> max(Node<K, V> n) {
while (n.right != null) {
n = n.right ;
}

return n;

6

3
/ \

Easy cases

Find the max of the
subtree rooted on the
left child -> its
predecessor

Just keep walking
right as far as you
can

9

BinarySearchTreeMap (6)

private Node<K, V> removeMax(Node<K, V> n) {
if (n.right == null) {
return n.left;

}

n.right = removeMax(n.right);
return n;

}

public Iterator <K> iterator () {
return null;

}

public String toString () {
return this.toStringHelper(this.root);

}

private String toStringHelper (Node<K, V> n)
String s = "(";
if (n != null) {
s += this.toStringHelper(n.left);
s += "" + n.key + ": " + n.value;
s += this . toStringHelper (n.right);
}

return s + ")";

{

6

/ \

Fix the pointers to
maintain BST
invariant

Flush out rest of
class: recursively
traverse the tree to
fill up an
ArrayList<K> and
return its iterator ©

9

Binary Search

What if we miss the median and do a 90/10 split instead?

n

n/10 + 9n/10
... +81n/100

... +729n/1000

.. +6561n/10000

... +59049n/100000

... + 531441n/1000000

... +4782969n/10000000

...+ 9In/10

Random Tree Height

Trying all permutations of 3 distinct keys

$ cat heights.3.log

tree[0]: 1 2 3 maxheight: 3
tree[1]: 1 3 2 maxheight: 3
tree[2]: 2 1 3 maxheight: 2
tree[3]: 2 3 1 maxheight: 2
tree[4]: 3 2 1 maxheight: 3
tree[5]: 3 1 2 maxheight: 3

numtrees: 6 average height: 2.66

maxheights[0]: O 0.00%
maxheights[1]: O 0.00%
maxheights[2]: 2 33.33%
maxheights[3]: 4 66.67%

Random Tree Height

$ cat heights.4.log

tree[0]: 1 2 3 4 maxheight:
tree[1]: 1 2 4 3 maxheight:
tree[2]: 1 3 2 4 maxheight:
tree[3]: 1 3 4 2 maxheight:
tree[4]: 1 4 3 2 maxheight:
tree[5]: 1 4 2 3 maxheight:
tree[6]: 2 1 3 4 maxheight:
tree[7]: 2 1 4 3 maxheight:
tree[8]: 2 3 1 4 maxheight:
tree[9]: 2 3 4 1 maxheight:
tree[10]: 2 4 3 1 maxheight: 3
tree[11]: 2 4 1 3 maxheight: 3
tree[12]: 3 2 1 4 maxheight:
tree[13]: 3 2 4 1 maxheight:
tree[14]: 3 1 2 4 maxheight:
tree[15]: 3 1 4 2 maxheight:
tree[16]: 3 4 1 2 maxheight:
tree[17]: 3 4 2 1 maxheight:
tree[18]: 4 2 3 1 maxheight:
tree[19]: 4 2 1 3 maxheight:
tree[20]: 4 3 2 1 maxheight:
tree[21]: 4 3 1 2 maxheight:
tree[22]: 4 1 3 2 maxheight:
tree[23]: 4 1 2 3 maxheight:

WWwwhp,r,owuwhrspH

AR BRARBDDOOLOLWWWLWWW

Trying all permutations of 4 distinct keys

numtrees: 24 average height: 3.33

maxheights[0]:
maxheights[1]:
maxheights[2]:
maxheights[3]:
maxheights[4]:

o -~ 0O OO0

0.00%
0.00%
0.00%
66.67%
33.33%

Random Tree Height

Trying all permutations of 5 distinct keys

numtrees: 120 average height: 3.80

maxheights[0]: O 0.00%
maxheights[1]: O 0.00%
maxheights[2]: O 0.00%
maxheights[3]: 40 33.33%
maxheights[4]: 64 53.33%

maxheights[5]: 16 13.33%

Random Tree Height

Trying all permutations of 10 distinct keys

numtrees: 3,628,800 average height: 5.64

maxheights[0]:
maxheights[1]:
maxheights[2]:
maxheights[3]:
maxheights[4]:
maxheights[3]:
maxheights[6]:
maxheights[7]:
maxheights[8]:
maxheights[9]:
maxheights[10]:

o O oo

253440
1508032
1277568
479040
99200
11008
912

0.00%
0.00%
0.00%
0.00%
6.98%
41.56%
35.21%
13.20%
2.73%
0.30%
0.01%

Random Tree Height

Trying all permutations of 11 distinct keys

numtrees: 39,916,800 average height: 5.91

maxheights[0]: O 0.00%
maxheights[1]: O 0.00%
maxheights[2]: O 0.00%
maxheights[3]: O 0.00%
maxheights[4]: 1056000 2.65%
maxheights[5]: 13501312 33.82%
maxheights[6]: 15727232 39.40%
maxheights[7]: 7345536 18.40%
maxheights[8]: 1950080 4.89%
maxheights[9]: 308480 0.77%
maxheights[10]: 27136 0.07%
maxheights[11]: 1024 0.00%

Random Tree Height

Trying all permutations of 12 distinct keys

numtrees: 479,001,600 average height: 6.17

maxheights[0]: O 0.00%
maxheights[1]: O 0.00%
maxheights[2]: O 0.00%
maxheights[3]: O 0.00%
maxheights[4]: 3801600 0.79%
maxheights[5]: 121362560 25.34%
maxheights[6]: 197163648 41.16%
maxheights[7]: 112255360 23.44%
maxheights[8]: 36141952 7.55%
maxheights[9]: 7293440 1.52%
maxheights[10]: 915456 0.19%
maxheights[11]: 65536 0.01%

maxheights[12]: 2048 0.00%

Random Tree Height

Trying all permutations of 13 distinct keys

numtrees: 6,227,020,800 average height: 6.40

maxheights[0]: O 0.00%
maxheights[1]: O 0.00%
maxheights[2]: O 0.00%
maxheights[3]: O 0.00%
maxheights[4]: 10982400 0.18%

maxheights[5]: 1099169280 17.65%
maxheights[6]: 1764912384 28.34%
maxheights[7]: 1740445440 27.95%

maxheights[8]: 658214144 10.57%
maxheights[9]: 159805184 2.57%
maxheights[10]: 25572352 0.41%
maxheights[11]: 2617344 0.04%

maxheights[12]: 155648 0.00%
I maxheights[13]: 4096 0.00%

Random Tree Height

Trying all permutations of 14 distinct keys

numtrees: 87,178,291,200 average height: 6.63

maxheights[0]: O 0.00%
maxheights[1]: O 0.00%
maxheights[2]: O 0.00%
maxheights[3]: O 0.00%
maxheights[4]: 21964800 0.03%
maxheights[5]: 10049994240 11.53%
maxheights[6]: 33305510656 38.20%
maxheights[7]: 27624399104 31.69%
maxheights[8]: 12037674752 13.81%
maxheights[9]: 3393895680 3.89%
maxheights[10]: 652050944 0.75%
maxheights[11]: 85170176 0.10%
maxheights[12]: 7258112 0.01%
maxheights[13]: 364544 0.00%
maxheights[14]: 8192 0.00%

Random Tree Height

Trying all permutations of 15 distinct keys

tree[44218000000]
tree[44219000000]
tree[44253000000]
tree[44254000000]
tree[44255000000]
tree[44256000000]
tree[44257000000]
tree[44258000000]
tree[44259000000]
tree[44260000000]
tree[44261000000]
tree[44262000000]
tree[44263000000]
tree[44264000000]
tree[44265000000]

:19471381512536 14 10 11 2 maxheight:
1947131156214 10 3 8 12 15 maxheight:
2194811151013 7 2512 3 14 6 maxheight:
21948123611 515214 10 7 13 maxheight:
2194812101527 146 13 11 5 3 maxheight:
21948121363 1114257 10 15 maxheight:
219481361014 35122 15 11 7 maxheight:
:1948132351012 14 7 11 6 15 maxheight:
:194813111565123 10 2 14 7 maxheight:
2194813145102 11 126 15 3 7 maxheight:
:194814711312105 13 6 2 15 maxheight:
:1948141035156 11 12 13 7 2 maxheight:
2194814121513 107 6 52 11 3 maxheight:
21948141513 117510 2 3 12 6 maxheight:
2194815311102 14712 13 6 5 maxheight:

NNNNNNONOOOONOONO O

Part 2: AVL Trees

Balanced Trees

iy,

2 3

/1

Maintaining Balance

Insert left, Insert right, Insert left, Insert right,
AVL Violation! Rebalanced Rebalanced AVL Violation!

Tree Rotations

right-rotation(B)

>
<€

left-rotation(A)

Complete Example

Insert these values: 457213

ins(5) ins(2)
/‘\ /\
4 4 5 5 5
/ \
2 7
ins(7))(\-y <
ins(1) / |ns(3

1
1(2) C'
fra—— !

/

/

\

\

Removing

AVL Tree Balance

By construction, an AVL tree can never become “too unbalanced”
*AVL condition ensures left and right children differ by at most 1
-But they arent necessarily “full”

REaPals

n=1 n=2 n=3 n=4 n=5

AN

n=6 n=7

Sparse AVL Trees

How many nodes are in the sparsest AVL tree of height h
« Sparse means fewest nodes with height h
» Does it still include an exponential number of nodes?

LA L

S; S, S;3 Sy S;
h=1 h=2 h=3 h=4 h=5
n=1 n=2 n=4 n=7 n=12

Sparse AVL Trees

How many nodes are in the sparsest AVL tree of height h
Sparse means fewest nodes with height h
Does it still include an exponential number of nodes?

O

Pap.e,

S, S, S,
h=2 h=3 h=4
n=2 n=4 n=7

SZ=2 S3=82+S1+1 S4=S3+82+1

Sh = Shq t Spo t 1

h=5
n=12

Ss=S,+S;+ 1

Fibonacci Sequence

public static int fib(int n) {
if (n<=1){
return |;

}

return fib(n-1) +

Nodes in an AVL Tree

How many nodes are in the sparsest AVL tree of height h
« Sparse means fewest nodes with height h
» Does it still include an exponential number of nodes?

hlO 1 2 3 4 5 6 7 8
Sh)|1 2 4 7 12 20 33 54 88
F(h+3)|2 3 5 8 13 21 34 55 89

S(h) = F(h + 3) - 1

Fibonacci grows exponentially at ¢"
AVL Trees grow exponentially at ¢"-1

Therefore the height of any AVL tree is O(lg n)
a b

o o o
- /

+b 145
a +
a+bistoaasaistob Y = 2 = 1.6180339887....

Implementation Notes

* Rotations can be applied in constant time!
* Inserting a node into an AVL tree requires O(lg n) time and
guarantees O(lg(n)) height

« Track the height of each node as a separate field

* The alternative is to track when the tree is lopsided, but just as
hard and more error prone

« Don’t recompute the heights from scratch, it is easy to compute
but requires O(n) time!

« Since we are guaranteeing the tree will have height Ig(n), just use
an integer

* Only update the affected nodes

Check out Appendix B for some very useful tips
on hacking AVL trees!

Sample Application

e g Inbox - michael.schatz@gma X ' JIj Conference agenda | Mid-Atl= x | [ll Google Finance: Stock marke X AVL tree applet X | G avltree applet - Google Sear: X m VisuAlgo - Binary Search Trec X Michael
C { @& ntips//visualgo.net e - N - BT 4
ng A JHUMail ER ES Daily [£] O U @ [Eischatziab &, SL Eicshl Ejhu ESrpi ESXfit E5Media ESfood [1 edit [1 Remove NYT Cookies ¥ Bookmarks 5 Other Bookmarks

X9 YISUALGO BINARY SEARCH TREE AVL TREE Exploration Mode =

Relayout the tree.

case3: this.rotateLeft

About Team Terms of use

https://visualgo.net/bst

Part 3: Treaps

BSTs versus Heaps

SN/

BST

All keys in left subtree
of k are <k, all keys in
right are >k

Tricky to balance, but
fast to find

SN/

Heap

N\

All children of the node
with priority p have
priority 2p

Easy to balance, but
hard to find (except
min/max)

BSTs versus Heaps

e
/S ON

BST

All keys in left subtree
of k are <k, all keys in
right are >k

Tricky to balance, but
fast to find

g

5

Yo

N
<

Heap

N\

All children of the node
with priority p have
priority =2p

Easy to balance, but
hard to find (except
min/max)

A treap is a binary search tree where the nodes have both user
specified keys (k) and internally assigned priorities (p).

When inserting, use standard BST insertion algorithm, but then
use rotations to iteratively move up the node while it has lower
priority than its parent (analogous to a heap, but with rotations)

A (boring) example

Insert the following pairs: 7/1, 2/2, 1/3, 8/4, 3/5, 5/6, 4/7

7/1 7/1 7/1 7/1 7/1 7/1 7/1
/ / /\ /\ /\ / 0\
2/2 2/2 2/2 8/4 2/2 8/4 2/2 8/4 2/2 8/4
/ / / \ / \ / \
1/3 1/3 1/3 3/5 1/3 3/5 1/3 3/5
\ \
5/6 5/6
/
4/17

The priorities were always increasing, so we never had to apply
any of the rotations.... boooooring and unbalanced

A (better) example

Insert the following pairs: 7/3, 2/0, 1/7, 8/2, 3/9, 5/1, 4/7

7/3 2/0 2/0 2/0 2/0
_ / \ / \ / \ / \
ins(2/0) 177 7/3 1/7 8/2 1/7 8/2 1/7 5/1
13 4 \! / /) /A
/1 (7) 8/2 t 7/3 5/1 3/9 8/2
20 PO N EPY
s inserd) P70 ins(a)’y,
r(7 '
\\i>£/o 1/7 8/2 / 5/1 2/0 '(qil’ 2/0 I3) 20
\ / /A /A /A
7/3 7/3 3)1/7 8/2 1/7 5/1 1/7 5/1
ins(1/7) in&(3/9 /2/0\ / /A / \
ing(3/9) 7/3 3/9 8/2 477 8/2
2/0 1/7 8/2 /') f /
/ 0\ / 5/1 7/3 3/9 7/3
1/7 7/3 7/3 y
/ 3/9
3/9

Notice that we inserted the same keys, but with different priorities

Just by changing the priorities, we can improve the balance!

Treap Reflections

/ Insert the following pairs: 7/1, 2/2, 1/3, 8/4, 3/5, 5/6, 4/7

7/1
/ \
_ o _ 2/2 8/4
Since the priorities are in sorted order, becomes a 7\

standard BST and may have O(n) height 1/3 3/5
\

5/6
/

\ 4/17

~

/

/ Insert the following pairs: 7/3, 2/0, 1/7, 8/2, 3/9, 5/1, 4/7

With a standard BST, for 2 to be root it would have to be 2/0

the first key inserted, and 5 would have to proceed all 1/;
the other keys except 1, ... /
It is as if we saw the sequence: 4/17
2,5,8,7,1,4,3 /

3/9

Note priorities in sorted order:
\ 2/0,5/1,8/2/,7/3,1/7, 4/7, 3/9

\
5/1

\
8/2
/

7/3

<

/

What priorities should we assign to
maintain a balanced tree!

Math.random()

Using random priorities essentially shuffles the input data
(which might have bad linear height)

into a random permutation
that we expect to have O(log n) height
©

It is possible that we could randomly shuffle into a poor tree
configuration, but that is extremely rare.

In most practical applications, a treap will perform just fine, and will often
outperform an AVL tree that guarantees O(log n) height but has higher
constants

L

Self Balancing Trees

Understanding the distinction between different kinds of
balanced search trees:

AVL trees guarantee worst case O(log n) operations by carefully
accounting for the tree height

treaps guarantee expected O(log n) operations by selecting a
random permutation of the input data

splay trees guarantee amortized O(log n) operations by
periodically applying a certain set of rotations (see lecture notes)

If you have to play it safe and don’t trust your random numbers,
=> AVL trees are the way to go.

If you can live with the occasional O(n) op
=> gplay trees are the way to go.

And if you trust your random numbers
=> treaps are the way to go.

Next Steps

l. Work on HW7

2. Check on Piazza for tips & corrections!

