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Lecture 26. BSTs and AVL trees



HW6

Assignment 6: Setting Priorities
Out on: October 26, 2018
Due by: November 2, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview

The sixth assignment is all about sets, priority queues, and various forms 
of experimental analysis aka benchmarking. You'll work a lot with jaybee as 
well as with new incarnations of the old Unique program. Think of the 
former as "unit benchmarking" the individual operations of a data 
structure, think of the latter as "system benchmarking" a complete (albeit 
small) application.



Agenda
1. Recap on Maps

2. BSTs

3. AVL Trees



Part 1:Maps



Maps 
aka dictionaries

aka associative arrays

Mike -> Malone 323
Peter -> Malone 223
Joanne   -> Malone 225
Zack -> Malone 160 suite
Debbie   -> Malone 160 suite
Randal   -> Malone 160 suite
Ron -> Garland 242

Key (of Type K) -> Value (of Type V) 

Note you can have multiple keys with the same value,
But not okay to have one key map to more than 1 value

How might you map to more than 1 value?



Maps, Sets, and Arrays 

Mike -> True
Peter -> True
Joanne   -> True
Zack -> True
Debbie   -> True
Yair -> True
Ron -> True

Sets as Map<T, Boolean>

0 -> Mike
1 -> Peter
2 -> Joanne
3 -> Zack
4 -> Debbie
5 -> Yair
6 -> Ron

Array as Map<Integer, T>

Maps are extremely flexible and powerful, 
and therefore are extremely widely used

Built into many common languages: Awk, Python, Perl, JavaScript…

How could maps be used with sparse arrays?

How could maps be used with graphs?



Map Interface v3

public interface OrderedMap<K extends Comparable<K>,V> 
extends Iterable<K>{

void insert (K k, V v) throws DuplicateKeyException;
V remove(K k) throws UnknownKeyException;
void put(K k, V v) throws UnknownKeyException; 
V get(K k) throws UnknownKeyException; 
boolean has(K k);

}

Woohoo! Now keys can be compared to each other

How would you implement this interface?



Map Implementation

…

PAMap
keys
values

…

Option 1: Parallel Arrays (sorted by keys)

KVAMap
keyvals …

Option 2: Array of KeyValue objects (sorted by keys)

KeyValue
key
value

If the arrays are sorted, we can use binary search =>
get() and has() will run in O(lg n) time! 

What about insert() or remove()? O(n) time L

Could we do everything in O(lg n) time or faster?



Part 2: Binary Search Tree



Binary Search Tree

<k

A BST is a binary tree with a special ordering property:
If a node has value k, then the left child (and its descendants) will have 
values smaller than k; and the right child (and its descendants) will have 

values greater than k

>k

k

Can a BST have duplicate values?



Examples

A B C D E F G

Which of these are valid BSTs? (And why?)

What is special about C through G?

Unlike heaps, the shape of the tree is not constrained, but …
What kind of shape would we like the BST to have? 



Searching

has(7):

has (2):

What is the runtime for has() ?

compare 6 => compare 8 => found 7

compare 6 => compare 4 => compare 1 => not found!



Searching

Recursive

search(tree, key):

if tree is empty:
return false

if key == tree.key:
return true

elif key < tree.key:
return search(tree.left, key)

else:
return search(tree.right, key)

has(key):
search(root, key)

Iterative

has(key):
tree = root

while tree is not empty

if key == tree.key:
return true

elif key < tree.key:
tree = tree.left

else:
tree = tree.right

return false;

Which version do you like better? Why?



Constructing

Note the shape of a general BST will depend on the order of insertions

empty 7 7
/
5

7
/ \
5   8

7
/ \
5   8
/
1

7
/ \
5   8
/
1
\
3

7
/ \
5   8
/
1
\
3
\
4

7
/ \
5   8
/     \
1       9
\
3
\
4

i(7) i(5) i(8) i(1) i(3) i(4) i(9)

What is the “worst” order for constructing the BST?

What is the “best” order for constructing the BST?

What happens for a random ordering?



Binary Search

Binary Search (and balanced BSTs) are fast because we split the range in half 
each time.

n

[How many times can we split a list in half?]

< > 2 x n/2

< > < > 4 x n/4

< > < > < > < > 8 x n/8

16 x n/16

2i x n/2i

lg n J



Binary Search
What if we miss the median and do a 90/10 split instead?

n

[How many times can we cut 10% off a list?]

n/10 + 9n/10 < >

... + 81n/100< >

< > ... + 729n/1000

< … + 6561n/10000>

< > … + 59049n/100000

< > … + 531441n/1000000

< > … + 4782969n/10000000

…+ 9in/10i



90% binary search
• 90/10 split runtime analysis

• If we randomly pick a pivot, we will get at least a 90/10 
split with at least 90% probability => O(log10/9 n)

• If we randomly pick a pivot, we will get at least a 99/100 
split with at least 99% probability => O(log100/99 n)

(9/10)xn  1

(10/9)x � n

x � log10/9 n

Find smallest x s.t.



99% binary search

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06
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x1
00
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log_100/99
log_10/9
log_2

What happens if we only slice off 1 item?

Everything is “okay” (but ~100x slower) as long as we always slice off 1% of the list

How would this occur?



Removing

Remove 
leaf 

is easy

6
/   \
3     8
/ \ /  \
1   4 7    9

6
/   \
3     8
/ \ \
1   4     9

6
/   \
3     9
/ \
1   4  

r(7) r(8) r(6)

Remove 
with only
one child 

Is easy

Remove
internal
node

?



Binary Search Tree

<k >k

k

Where is k’s immediate predecessor?
Where is k’s immediate successor?



Binary Search Tree

<k >k

k

Where is k’s immediate predecessor?
Where is k’s immediate successor?

The predecessor is the 
rightmost node in the left 
subtree

The successor is the 
leftmost node in the right 
subtree



Binary Search Tree

<k >k

k

Where is k’s immediate predecessor?
Where is k’s immediate successor?

Swapping the predecessor with root is 
good because:
1) The ordering of the tree is preserved
2) The predecessor has zero or 1 child 

• It cant have 2 children or it is not 
the predecessor (that right child 
is bigger)

The predecessor is the 
rightmost node in the left 
subtree



Removing

Remove 
leaf 

is easy

6
/   \
3     8
/ \ /  \
1   4 7    9

6
/   \
3     8
/ \ \
1   4     9

6
/   \
3     9
/ \
1   4  

7 8 6

Remove 
with only
one child 

Is easy

Remove
internal
node

?

1. Find k’s successor (or predecessor) and swap values with k
2.  Remove the node we got that key from (easy, since it has at most one child)

4
/   \
3     9
/     
1     

9
/   
3     
/ \
1   4    

or



BinarySearchTreeMap (1)

import java.util.Iterator;

public class BinarySearchTreeMap<K extendsComparable<K>,V>
implements OrderedMap<K, V> {

private static class Node<K, V> { 
Node<K, V> left, right;
K key; 
V value ;
Node(K k,V v){ 

this.key = k;
this.value =v; 

}
}

private Node<K, V> root;

public boolean has(K k) { 
return this.find(k) != null;

}

Static nested class
Sometimes convenient 
to use child[0] and 
child[1]

has() calls 
find()

6
/   \
3     9
/ \
1   4  



BinarySearchTreeMap (2)
private Node<K, V> find(K k) { 

Node<K, V> n = this.root; 
while (n != null) {

int cmp = k.compareTo(n.key); 
if (cmp < 0){

n = n.left;
} else if (cmp > 0){

n = n.right;
} else { 

return n;
} 

}
return null; 

}

public void put(K k, V v) throws UnknownKeyException { 
Node<K, V> n = this.findForSure(k);
n.value = v;

}

public V get (K k) throws UnknownKeyException { 
Node<K, V> n = this.findForSure(k);
return n.value;

}

find() iteratively 
walks the tree, 
returns null if 
not found

put()/get() use a 
special 
findForSure() 
method

6
/   \
3     9
/ \
1   4  



BinarySearchTreeMap (3)
private Node<K, V> findForSure(K k) throws UnknownKeyException {

Node<K, V> n = this.find(k); 
if (n == null) {

throw new UnknownKeyException(); 
}
return n; 

}

public void insert (K k, V v) throws DuplicateKeyException{ 
this.root = this.insert(this.root, k, v);

}

private Node<K, V> insert(Node<K, V> n, K k, V v) { 
if (n == null) {

return new Node<K, V>(k, v); 
}
int cmp = k.compareTo(n.key); 
if (cmp < 0){

n.left = this.insert(n.left, k, v); 
} else if (cmp > 0){

n.right = this.insert(n.right, k, v); 
} else {

throw new DuplicateKeyException(); 
}
return n; 

}

Just like find() but 
throws exception if 
not there

Recurse to right spot, 
add the new node, 
and return the 
modified tree after 
insert is complete

(n.left or n.right may 
be reset to same 
value for nodes that 
don’t change)

6
/   \
3     9
/ \
1   4  



BinarySearchTreeMap (4)

public V remove(K k) throws UnknownKeyException { 
V value = this.get(k);
this.root = this.remove(this.root, k); 
return value;

}

private Node<K, V> remove(Node<K, V> n, K k) throws UnknownKeyException {
if (n == null) {

throw new UnknownKeyException();
}

int cmp = k.compareTo(n.key); 

if (cmp < 0){
n.left = this.remove(n.left , k); 

} else if (cmp > 0){
n.right = this.remove(n.right, k); 

} else {
n = this.remove(n); 

}

return n; 
}

Recurse to right spot, 
then call the 
overloaded private 
remove() function

First get() it so we 
can return the value, 
then actually remove

6
/   \
3     9
/ \
1   4  



BinarySearchTreeMap (5)

private Node<K, V> remove(Node<K, V> n) { 
// 0 and 1 child
if (n.left == null) { 

return n.right;
}

if (n.right == null) {
return n.left; 

}

// 2 children
Node<K, V> max = this.max(n.left);
n.left = this.removeMax(n.left); 
n.key = max.key;
n.value = max.value;
return n;

}

private Node<K, V> max(Node<K, V> n) { 
while (n.right != null) {

n = n.right ;
}
return n; 

}

Easy cases

Find the max of the 
subtree rooted on the 
left child -> its 
predecessor

Just keep walking 
right as far as you 
can

6
/   \
3     9
/ \
1   4  



BinarySearchTreeMap (6)
private Node<K, V> removeMax(Node<K, V> n) { 

if (n.right == null) {
return n.left; 

}
n.right = removeMax(n.right);
return n; 

}

public Iterator <K> iterator () { 
return null;

}

public String toString () {
return this.toStringHelper(this.root);

}

private String toStringHelper (Node<K, V> n) { 
String s = "(";
if (n != null) {

s += this.toStringHelper(n.left); 
s += "" + n.key + ": " + n.value; 
s += this . toStringHelper (n.right);

}
return s + ")"; 

}

Fix the pointers to 
maintain BST 
invariant

Flush out rest of 
class: recursively 
traverse the tree to 
fill up an 
ArrayList<K> and 
return its iterator J

6
/   \
3     9
/ \
1   4  



Part 3: AVL Trees



Constructing

Note the shape of a general BST will depend on the order of insertions

empty 7 7
/
5

7
/ \
5   8

7
/ \
5   8
/
1

7
/ \
5   8
/
1
\
3

7
/ \
5   8
/
1
\
3
\
4

7
/ \
5   8
/     \
1       9
\
3
\
4

7 5 8 1 3 4 9

We (probably) cant change the order that we see data, 
but what can we change?

We hope for O(lg(n)) height, but can end up being O(n) for nearly-sorted values



AVL Tree

Self-balancing binary search tree

Named after the two Russian inventors: Adelson-Velskii and Landis

First published in 1962, one of the first “efficient data structures”

empty 7 7
/
5

7
/ \
5   8

7
/ \
5   8
/
1

5
/ \
3   7
/     \
1 8

5
/ \
3   7
/ \ \
1   4   8

5
/   \
3     8
/ \ / \
1   4 7   9

7 5 8 1 3 4 9

*not an actual AVL tree construction



Balanced Trees
Note that we cannot require a BST to be perfectly balanced:

1 2
/
1

1
\
2

3
/
2
/
1

3
/
1
\
2 

2
/ \
1 3

1
\
3
/
2

1
\
2
\
3

Ba
la

nc
ed

N
ot

 B
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d

N
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d

N
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N
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N
ot
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d

Since neither tree with 2 keys is perfectly balanced we cannot insist on it

AVL Condition: 
For every node n, the height of n’s left and right subtree’s differ by at most 1



Bonus: Counting Binary Search Trees
How many valid binary search trees are there with n nodes?

1 2
/
1

1
\
2

3
/
2
/
1

3
/
1
\
2 

2
/ \
1 3

1
\
3
/
2

1
\
2
\
3

C(1) = 1 C(2) = 2 C(3) = 5

C(4) = 14 C(5) = 132 C(6) = 429

The number of binary trees can be calculated using the Catalan number.

Recursive solution: 
Number of binary search trees = (Number of Left binary search sub-trees) * 
(Number of Right binary search sub-trees) * (Ways to choose the root)

NOT ON 
FINAL EXAM

J



Maintaining Balance

h h

k
< >

Assume that the tree starts in a balanced state:

h h

k
< >

h+1 h

k
< >

h h

k
< >

h h+1

k
< >

Inserting a new value can lead to 1 of 4 possible outcomes:

Insert left,
Same height

Insert left,
Height + 1

Insert right,
Same height

Insert right,
Height + 1

Meh, AVL property still holds



Maintaining Balance
Assume that the tree starts in a slightly unbalanced state:

h+1 h

k

< >
h h+1

k

< >

Woohoo! AVL Violations ;-)

Insert left,
AVL Violation!

Insert right,
Rebalanced

Insert left,
Rebalanced

Insert right,
AVL Violation!

h+2 h

k

< >
h+1 h+1

k

< >
h+1 h+1

k

< >
h h+2

k

< >

Inserting a new value can maintain the subtree heights or 1 of 4 possible outcomes:



Maintaining Balance

h

k

h
h+1

x
h

k

h
h+1

y

Case 1a Case 4a

How can we restore balance to the trees?

h+2 h+2

Lets first assume the extra element goes into the leftmost or rightmost subtree



Tree Rotations

>A
>B

B

>A
<B

<A
<B

A

<A
<B

A

>A
<B

>A
>B

B

Note: Rotating a BST maintains the BST condition!

Green < A < Brown < B < Purple

right-rotation(B)

left-rotation(A)



Restoring Balance

h

k

hh+1

x

Case 1a

h

k

h h+1

y

Case 4a

h+1

y

hh

k

h+1

x

h h

k

right-rotate(k) left-rotate(k)

h+2 h+2



Restoring Balance

h

k

hh+1

x

Case 1a

h

k

h h+1

y

Case 4a

h+1

y

hh

k

h+1

x

h h

k

right-rotate(k) left-rotate(k)

Hooray! AVL Condition restored by rotating around k!

h+2 h+2



Corner cases

h

k

h+1
h

x

Case 1b

h

k

h+1 h

y

Case 4b

Will rotating around k fix the problem?

What else can we do?



Corner cases

h

k

h

x

Case 1b

h* h*

a h

k

h

y

Case 4b

h*h*

b

Height is h* because 
could be h or h-1

h

k

h
x

h*

h*

a

h

k

h
y

h*

h*

b

left-rotate(x) right-rotate(y)



Corner cases
Case 1b Case 4b

h

k

h
x

h*

h*

a

h

k

h
y

h*

h*

b

right-rotate(k)

h

k

h

x

h* h*

a

left-rotate(k)

h

k

h

y

h*h*

b

left-rotate(x) right-rotate(y)



Corner cases
Case 1b Case 4b

h

k

h
x

h*

h*

a

h

k

h
y

h*

h*

b

right-rotate(k)

h

k

h

x

h* h*

a

left-rotate(k)

h

k

h

y

h*h*

b

Hooray! Two rotations restored the balance to the tree

Note that it holds even if h* = h or h* = h-1



Complete Example
Insert these values: 4 5 7 2 1 3

4 4
\
5

4
\
5
\
7

5
/ \

4   7

5
/ \

4   7
/

2 5
/ \

4   7
/

2
/

1

5
/ \

2   7
/ \

1   4 5
/ \

2   7
/ \

1   4
/

3

5
/ \

4   7
/ 

2   
/ \

1   3 

4
/ \

2   5
/ \ \

1   3   7

ins(5)

ins(7)

ins(2)

ins(1) ins(3)

l(4)

r(4)

l(2) r(5)

Note: 
AVL Violations are fixed bottom up



Implementation Notes

• Rotations can be applied in constant time!
• Inserting a node into an AVL tree requires O(lg n) time and 

guarantees O(lg(n)) height

• Track the height of each node as a separate field
• The alternative is to track when the tree is lopsided, but just as 

hard and more error prone
• Don’t recompute the heights from scratch, it is easy to compute 

but requires O(n) time!
• Since we are guaranteeing the tree will have height lg(n), just use 

an integer
• Only update the affected nodes

Check out Appendix B for some very useful tips 
on hacking AVL trees!



Sample Application

https://visualgo.net/bst



Next Steps

1. Work on HW6

2. Check on Piazza for tips & corrections!


