CS 600.226: Data Structures
Michael Schatz

Oct 102018
Lecture |8. Midterm review 2

Midterm Topics

Topics For each data structure discuss:

Explain the interface

Explain/Draw how it will be implemented
Explain/Draw how to add/remove elements
lterate through the elements

Explain the complexity of these

Ol.Intro (kd-tree)
02.Interfaces
03.ArraysGenericsExceptions
04.Lists

05.lterators

06.Complexity
07.MoreComplexity
08.Sorting In addition:

09.Stacks

1 0.Stacksjunit - Can you discuss interfaces and ADTs

| .Queues and Dequeues - Can you discuss computational complexity
|2.Lists (Single/Double)

| 3.Morelists

| 4. Trees & Tree Iteration
|5.Graphs

| 6.GraphSearch

Midterm Topics

Enqueue last, Dequeue first

front()

Queue l
Node Node Node

first |] 1 r 2 -|_> 3 J—) null
next — next — next —

last

Enqueue last, Dequeue first

front()

l

-I_) null

Queue
Node Node Node
- 1 2 3
first ——
next — next — next —
last T
Node
4
next

addme

Enqueue last, Dequeue first

front()

l

[

Queue
Node Node Node
- 1 2 3
first ——
next — next — next —
last T
Node
4
next

null

addme

Enqueue last, Dequeue first

front()

l

Queue
Node Node Node
- 1 2 3
first ——
next — next — next
last T
Node
4 <
next

null

addme

Enqueue last, Dequeue first

Queue

first |

front()

l

Node

next —

Node

next —

Node

next —

[

Node

next —

|) null

last

Enqueue last, Dequeue first

Queue

first |

front()

l

Node

next —

Node

next —

Node

next —

[

Node

next —

|) null

last

Enqueue last, Dequeue first

Queue

first

last

front()

l

Node

next

\ 4

Node

next —

Node

next —

[

Node

next —

—|_) null

Enqueue last, Dequeue first

Queue

first

last

front()

l

Node

next

Node

next —

Node

next —

[

Node

next —

—|_) null

Enqueue last, Dequeue first

Queue

first

last

front()

l

Node Node Node

2 _|—) 3 —|—) 4 _|—> null
next — next — next —

oldfront

l

Node

next

Enqueueing and dequeue are O(1) ©

Careful with initial enqueue/dequeue
as everything will be null

front

Dequeues

insertFront() insertBack()

| |

back

| |

removeFront() removeBack()

Dynamic Data Structure used for storing sequences of data

Insert/Remove at either end in O(1)
If you exclusively add/remove at one end, then it becomes a stack

If you exclusive add to one end and remove from other, then it
becomes a queue

Many other applications:
» browser history: deque of last 100 webpages visited

List Q
insertFront insertBack
front()
(Queue l
Node Node ' Node ‘Queue
l Node Node Node
first — 3 j 2 ﬂl_l- 1 *L‘ null i 3 2 1 null
| next next | next __" hext __,r next next| |
last T T I last T
‘N“" front() _ ' Node
4 4 «
T next < | ‘ next —
addme addme
addme.next = first; first = addme; last.next = addme; addme.next = null

removeFront removeBack

front()

Queue ‘

Queue l Node Node ' Node 'Node |
Node ‘Node ’Node ’Node - 4 3 | 5 4 J o

first 1 2 3 ' 4 null next next ‘ ne}d ‘ ne)f| '

next ——+ 1 next ~ﬂ next —rﬂ next

last

i] | 227

front

first = first.next; 27?

Deque with Doubly Linked List

Deque

first ——

last

Node

next

-prev

null

Node

next
prev

Node

next

7

- prev

il

> null

Trees and Graphs

For each data structure discuss:

- Explain the interface

- Explain/Draw how it will be implemented

- Explain/Draw how to add/remove elements
- lterate through the elements

- Explain the complexity of these

Trees! Graphs!

- All of the above - All of the above

- How to implement pre-, - How to implement DFS
in-, post-, level-order vs BFS
traversal

Trees are all around us ©

Types of Trees

Unordered Linear 3-ary Tree
Binary tree List (k-ary tree has k children)

Special Trees
Height of root
=0
Total Height
=3
Full Binary Complete Binary Tree
Tree Every level full, except
Every node has potentially the bottom level
0 or 2 children
What is the maximum number of leaf nodes in a complete binary tree? 2h
What is the maximum number of nodes in a complete binary tree? 2h+1 1

What fraction of the nodes in a complete binary tree are leaves? about half

Balancing Trees

SO NRAN

Balanced Binary Tree Unbalanced Tree
Minimum possible height Non-minimum height

Balanced but not complete!

10

15 20

15 20 25 30 0 10

5 10

0

Tree Heights

T R T 1 L
v
' | ' 1 |
Ap+05 20+05 De+00 2e+05 40+05
Y
1 1 b} L2 1
~de+08 2e+08 Oe+00 2e+08 de+08

Tree Traversals

Tree Traversals

Tree Traversals

InOrder vs PostOrder

=3
JH,

PreOrder Traversals

_
.

PreOrder Traversals

[A]
[D,C,B]
[D,C,F.E]
[D,C,F]
[D,C.J]
[D.C]

[D]

"

PreOrder Traversals

[A]
[D,C,B]
[D,C,F.E]
[D,C,F]
[D,C.J]
[D.C]

[D]

Level Order Traversals

[A]
[D,C,B]
[F.E,D,C]
[F.E,D]
[I,H,G,FE]
[I,H,G,F]
[J,,H,G]
[J,1,H]

Multiple Traversals

public abstract class Operation<T> { Abstract class
void pre(Position<T> p) {} simplifies the use of
void in(Position<T> p) {} function objects -
void post(Position<T> p) {} functors

}

public interface Tree<T> { Client extends
.. Operation<T> but
traverse (Operation<T> 0); overrides just the
. methods that are

} needed ©

// Tree implementation pseudo-code:
niceTraversal (Node n, Operation o0):
if n is not null:
Oo.pre(n)
niceTraversal(n.left, o)
O.in(n)
niceTraversal(n.right, o)
Oo.post(n)

Graphs are Everywhere!

BFS(start, stop) 0
// initialize all nodes dist = -1 =
start.dist = 0
list.addEnd(start) A,B,C
while (llist.empty()) %%E’E]
cur = list.begin() I [How many nodes will it visit?]
if (cur == stop)
rint cur.dist; D,E,FL,G,H \ : :
elspe E.FL.G,H,|I [What's the running time?]
foreach child in cur.children F| G H | J
if (child.dist == -1) LGHIJX [What happens for disconnected
Mgt 55| componemen
ist.addEnd(child) H.1.J.X.0
L‘-LX,O’M
JsxaosM
X1O’M’N
O,M,N
M,N

BFS(start, stop) 0 DFS(start, stop) 0
/[initialize all nodes dist = -1 = /[initialize all nodes dist = -1
start.dist = 0 start.dist = 0 A,B,C
list.addEnd(start) A,B,C list.addEnd(start)
while (llist.empty()) %%E’E L while (llist.empty()) AB,GH
cur = list.begin() === cur = list.end() A,B,G,M
if (cur == stop) if (cur == stop)
print cur.dist; D,E,F,.L,G,H print cur.dist;
else E.F,.L,G,H,I else
foreach child in cur.children F| G H | J foreach child in cur.children
if (child.dist == -1) [,G,H,I,J,X if (child.dist == -1)
C.hI|C|.C|ISt = CUI’.(:.iISt+| G.H.1.J.X,0 C.hI|C|.dISt = cur.qlst+l
list.addEnd(child) H.1.J.X,0 list.addEnd(child)
1,J,X,0,M
J,X,0,M
X,0,M,N A.B
O,M,N
M.N A
D
|

BFS: Queue

BF
7
sta
list

while (!list. empty())
cur = list.begin()

if (cur == stop)

print cur.dist;
else
foreach child in cur.children
if (child.dist == -1)
child.dist = cur.dist+1
list.addEnd(child)

What is the runtlme compIeX|ty’?

What is the space complexity?

B,C,D,E

C,D,E,FL

D,E,F.L,G,H
E.F.L,G,H,l
F.L,G,H,I,J
L,G,H,I,J,X

Q’H’I’J’X’O
H’I’J7X’O

1,J,X,0,M
J,X,0,M
X,0,M,N
O.M,N
M,N

DFS: Stack

:/) Whatwls t_h_e_ _rtf_r_\tlme complexity?
ﬁzl What is the space complexity? =
while (!list. empty()) A,
cur = list.end() A
if (cur == stop)
print cur.dist;
else
foreach child in cur.children
if (child.dist == -1)
child.dist = cur.dist+|
list.addEnd(child)
A.B

o>

B,G,H
7B,G7M

Complexity Analysis

How long will the algorithm take when run on inputs of different sizes:

* If it takes X seconds to process 1000 items, how long will it take to
process twice as many (2000 items) or ten times as many (10,000 items)?

Generally looking for an order of magnitude estimate:

Constant time Linear time Quadradic time

>

Q

—

)

Q

>

O

—

>

D

=

O
4 O = -
: -9 Pl
Wam e

X.

ﬁ

<

=

D

=

Q

<

D

.

D

Q)

P

-~)

+)
W W W W W W w
1 wE

Accessing 15t or
1 billionth entry

from an array Takes 10 times longer Nested loops grows
takes same to scan a list that has with the square of the
amount of time 10 times as many list length
values

Also very important for space characterization:

Sometimes doubling the number of elements will more than double the
amount of space needed

FindMax Analysis

public static int findMaximum(int [] myarray) {
int max = myarray[0];
for (int i = 1; i < myarray.length; i++) {
if (myarray[i] > max) {
max = myarray[i];
}
}

return max;

}

What is the total amount of work done?
T(n) = C(n) +A(n) =(2n) + (3n - 1) = 5n-1

Should we worry about the “-1°?

Nah, for sufficiently large inputs will make a tiny difference

Should we worry about the 5n?

Nah, the runtime is linearly proportional to the length of the array

bl

Big-O Notation

Formally, algorithms that run in O(X) time means that the total
number of steps (comparisons and assignments) is a polynomial
whose largest term is X, aka asymptotic behavior

* f(x) € O(g(x)) if there exists c > 0 (e.g.,c = I) and x, (e.g., xo = 5)
such that f(x) < cg(x) whenever x > x,

* T(n) =33 => 0O(I)

* T(n) = 5n-2 => O(n)

* T(n) =37n?+ |6n—-8 => 0(n?)

* T(n) = 99n° + 12n? + 70000n + 2 => 0O(n’)

* T(n) = 127n log (n) + log(n) + |6 =>0O(nlg n)
* T(n) =33 log (n) +8 => O(lg n)

* T(n) = 900%2" + |2n? + 33n + 54 => 0(2")

Informally, you can read Big-O(X) as “On the order of X”
* O(l) => On the order of constant time

O(n) => On the order of linear time

O(n?) => On the order of quadratic time

O(n3) => On the order of cubic time

O(lg n) => On the order of logarithmic time

O(n Ig n) => On the order of n log n time

Growth of functions

100
1

aonn
g

Growth of functions

RSN

Growth of functions

[Horeible] (2ad] ot | [Good| [EXceTTERt]

http://bigocheatsheet.com/

Growth of functions

Trying every
possible permutation

by [o@An)

[Horrible| (8ad| | Fair||Good

/ O(n”2)

Trying every

possible subset

Processing every element in a square array,
Comparing every element to every other element

Operations

O("'OQ/

Finding the nearest photo
from every other photo with a k-d tree

Linear Search |0o(n)

Oflog n), O(1)

Finding an element in a balanced tree,
Simple arithmetic, simple comparison, array access ym/

Quadratic Sorting Algorithms

Selection Sort Bubble Sort Insertion Sort
Move next smallest Swap up bigger Slide next value into
into position values over smaller correct position

Asymptotically all three have the same performance, but can differ
for different types of data. HW 3 will compare them in more detail

Miderm Page 1 of 6

600.226: Data Structures
Midterm

Peter H. Frohlich
phf@cs jhu.edu

July 29,2013
Time: 40 Minutes

Start here: Please ll in the following imponant information uwsing a permanent pen before you do
anything clse! Your exam will mot be graded if you use a pencil or erasable ink on this page.
Name (print):
Email (print):

Ethics Pledge: With your signature you certify the information above and you also affirm the following:
“I agree 1o complete this exam withowt wnauthorized assistance from any person, mateniols, or device.”

Signature:
Date:

Instructions: Please read these instructions carcfully before you start. Switch off your phoncs, pagers,
and other noisy gadgets! You are not allowed to have anything but a pen (pencil, eraser) and this cxam
on your desk. You are not allowed 10 talk 10 anyone during the exam, If you have a question, please raise
yous hand quietly. You must remain seated guictly until all exams have been collected. Remember that
you can not claim grading errors if you do not ise & permanent pen for your answerns.

Do not open before you are told to do so!

You got out of 40 points.

600.226: Data Structures Saummer 2013

Next Steps

|. Review for Midterm

2. Check on Piazza for tips & corrections!

