
CS 600.226: Data Structures
Michael Schatz

Oct 10 2018
Lecture 18. Midterm review 2



Midterm Topics

Topics

01.Intro (kd-tree)
02.Interfaces
03.ArraysGenericsExceptions
04.Lists
05.Iterators
06.Complexity
07.MoreComplexity
08.Sorting
09.Stacks
10.StacksJunit
11.Queues and Dequeues
12.Lists (Single/Double)
13.MoreLists
14.Trees & Tree Iteration
15.Graphs
16.GraphSearch

For each data structure discuss:

- Explain the interface
- Explain/Draw how it will be implemented
- Explain/Draw how to add/remove elements
- Iterate through the elements
- Explain the complexity of these

In addition:

- Can you discuss interfaces and ADTs
- Can you discuss computational complexity



Midterm Topics



Enqueue last, Dequeue first

Queue

first

last

Node

1
next

Node

2
next

Node

3
next

null

front()

Lets try inserting at last and removing from first



Enqueue last, Dequeue first

Queue

first

last

Node

1
next

Node

2
next

Node

3
next

null

front()

Node

4
next

addme



Enqueue last, Dequeue first

Queue

first

last

Node

1
next

Node

2
next

Node

3
next

null

front()

Node

4
next

addme



Enqueue last, Dequeue first

Queue

first

last

Node

1
next

Node

2
next

Node

3
next

null

front()

Node

4
next

addme



Queue

first

last

Node

1
next

Node

2
next

Node

3
next

Node

4
next

null

Enqueue is an O(1) operation J

Enqueue last, Dequeue first

front()



Queue

first

last

Node

1
next

Node

2
next

Node

3
next

Node

4
next

null

Now try dequeueing at first

Enqueue last, Dequeue first

front()



Queue

first

last

Node

1
next

Node

2
next

Node

3
next

Node

4
next

null

Enqueue last, Dequeue first

front()



Queue

first

last

Node

1
next

Node

2
next

Node

3
next

Node

4
next

null

Enqueue last, Dequeue first

front()



Queue

first

last

Node

1
next

Node

2
next

Node

3
next

Node

4
next

null

Enqueue last, Dequeue first

oldfront

front()

Enqueueing and dequeue are O(1) J

Careful with initial enqueue/dequeue 
as everything will be null



Dequeues

front back

insertFront() insertBack()

removeBack()removeFront()

Dynamic Data Structure used for storing sequences of data
• Insert/Remove at either end in O(1)

• If you exclusively add/remove at one end, then it becomes a stack

• If you exclusive add to one end and remove from other, then it 
becomes a queue

• Many other applications: 
• browser history: deque of last 100 webpages visited



List Queue
insertFront insertBack

removeBackremoveFront

addme.next = first; first = addme; last.next = addme; addme.next = null

first = first.next; ???



Deque

first

last

null

Node

1
next
prev

Deque with Doubly Linked List

Node

2
next
prev

Node

3
next
prev

Node

4
next
prev

null

Very similar to a singly linked list, except each node has a 
reference to both the next and previous node in the list

A little more overhead, but significantly increased flexibility: supports 
insertFront(), insertBack(), removeFront(), removeBack(), 

insertBefore(), removeMiddle()



Trees and Graphs

Trees!
- All of the above
- How to implement pre-, 

in-, post-, level-order 
traversal

For each data structure discuss:

- Explain the interface
- Explain/Draw how it will be implemented
- Explain/Draw how to add/remove elements
- Iterate through the elements
- Explain the complexity of these

Graphs!
- All of the above
- How to implement DFS 

vs BFS



Trees are all around us J



Types of Trees

Unordered 
Binary tree

Linear 
List

3-ary Tree
(k-ary tree has k children)

Single root node (no parent)
Each non-root node has at most 1 parent

Node may have 0 or more children

Internal node: has children; includes root unless tree is just root
Leaf node (aka external node): no children



Special Trees

Full Binary 
Tree

Every node has 
0 or 2 children

What is the maximum number of leaf nodes in a complete binary tree?

Complete Binary Tree
Every level full, except 

potentially the bottom level

2h

What is the maximum number of nodes in a complete binary tree? 2h+1 -1

Height of root 
= 0

Total Height 
= 3

What fraction of the nodes in a complete binary tree are leaves? about half



Balancing Trees

Balanced Binary Tree
Minimum possible height

Unbalanced Tree
Non-minimum height

Balanced but not complete!



Tree Heights



Tree Traversals

+

1 *

2 3



Tree Traversals

+

1 *

2 3



Tree Traversals

+

1 *

2 3

Note here we visit children from left to right, but could go right to left

Notice we visit internal nodes 3 times:
1: stepping down from parent
2: after visiting first child
3: after visiting second child

Different algs work at different times
1: preorder + 1 * 2 3
2: inorder 1 + 2 * 3
3: postorder 1 2 3 * +



InOrder vs PostOrder
What is the inorder print?

EBFJ AC GDHKIL

What is the postorder print?

EJFB C GHKLIDA

PostOrderTraversal(Node n):
for c in x.children:

PostOrderTraversal(c)
print(n)

InOrderTraversal(Node n):
if n is not null

InOrderTraversal(n.left)
print(n)
InOrderTraversal(n.middle)
InOrderTraversal(n.right)



PreOrder Traversals

A

B DC

E F

J

G IH

LK

How to preorder print?

PreOrderTraversal(Node n):
print(n)
for c in x.children:

PreOrderTraversal(c)



PreOrder Traversals

A

B DC

E F

J

G IH

LK

How to preorder print?

PreOrderTraversal(Node n):
Stack s
s.push(n) 
while (!s.empty()):

Node x = s.pop()
print(x)
for c in x.children:

s.push(c)

[A]
[D,C,B]
[D,C,F,E]
[D,C,F]
[D,C,J]
[D,C]
[D]
[I, H, G]
…



PreOrder Traversals

A

B DC

E F

J

G IH

LK

How to preorder print?[A]
[D,C,B]
[D,C,F,E]
[D,C,F]
[D,C,J]
[D,C]
[D]
[I, H, G]
…

Stack leads to a 
Depth-First Search

PreOrderTraversal(Node n):
Stack s
s.push(n) 
while (!s.empty()):

Node x = s.pop()
print(x)
for c in x.children:

s.push(c)



Level Order Traversals

A

B DC

E F

J

G IH

LK

How to level order print?

(A) (B C D) (E F G H I) (J K L)

LevelOrderTraversal(Node n):
Queue q
s.enqueue(n)
while (!q.empty()):

Node x = q.dequeue()
print(x)
for c in x.children:

s.enqueue(c)

[A]
[D,C,B]
[F,E,D,C]
[F,E,D]
[I,H,G,F,E]
[I,H,G,F]
[J,I,H,G]
[J,I,H]
…

Queue leads to a 
Breadth-First Search



Multiple Traversals
public abstract class Operation<T> {

void pre(Position<T> p) {}
void in(Position<T> p) {}
void post(Position<T> p) {}

}

public interface Tree<T> {
...
traverse(Operation<T> o);
... 

}

// Tree implementation pseudo-code:
niceTraversal(Node n, Operation o):

if n is not null:
o.pre(n)
niceTraversal(n.left, o)
o.in(n)
niceTraversal(n.right, o)
o.post(n)

}

Client extends 
Operation<T> but 
overrides just the 
methods that are 

needed J

Abstract class 
simplifies the use of 

function objects -
functors



Graphs are Everywhere!

Computers in a network, Friends on Facebook, Roads & Cities on 
GoogleMaps, Webpages on Internet, Cells in your body, …



00

A

B

C

D

E

F

G

H

L

NJ

I

M

3

X0

0

0

A:1

B:1

C:1

D:2

E:2

G:2

H:2

F:2

L:2

N:4J:3

I:3

M:3

O:3

X

BFS
BFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.begin()
if (cur == stop) 

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child) 

[How many nodes will it visit?]

[What's the running time?]

[What happens for disconnected
components?]

A,B,C

D,E,F,L,G,H
E,F,L,G,H,I
F,L,G,H,I,J
L,G,H,I,J,X
G,H,I,J,X,O
H,I,J,X,O

I,J,X,O,M
J,X,O,M
X,O,M,N
O,M,N
M,N

N

B,C,D,E
C,D,E,F,L

X:3



00

A:1

B:1

C:1

D:2

E:2

F:2

G:2

H:2

L:2

N:4J:3

I:3

M:3

O:3

X:3

BFS
BFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.begin()
if (cur == stop) 

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child) 

0

A

B

C

D

E

F

G

J

H

L

I

M

N

O

K0 B:1

A:1

D:2 I:3

E:7

G:2 L:3C:1

H:2 M:3

N:5

O:4

J:6

F:7 K:8

0DFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.end()
if (cur == stop) 

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child) 

DFS
0

A,B,C

D,E,F,L,G,H
E,F,L,G,H,I
F,L,G,H,I,J
L,G,H,I,J,X
G,H,I,J,X,O
H,I,J,X,O

I,J,X,O,M
J,X,O,M
X,O,M,N
O,M,N
M,N

N

B,C,D,E
C,D,E,F,L

A,B,C

A,B,G,H
A,B,G,M

A,B,G
A,B,L
A,B,O
A,B,N
A,B,J
A,B,E,F
A,B,E,K
A,B,E

A,B

A
D
I



00

A:1

B:1

C:1

D:2

E:2

F:2

G:2

H:2

L:2

N:4J:3

I:3

M:3

O:3

X:3

BFS: Queue
BFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.begin()
if (cur == stop) 

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child) 

0

A

B

C

D

E

F

G

J

H

L

I

M

N

O

K0 B:1

A:1

D:2 I:3

E:7

G:2 L:3C:1

H:2 M:3

N:5

O:4

J:6

F:7 K:8

0DFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.end()
if (cur == stop) 

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child) 

DFS: Stack
0

A,B,C

D,E,F,L,G,H
E,F,L,G,H,I
F,L,G,H,I,J
L,G,H,I,J,X
G,H,I,J,X,O
H,I,J,X,O

I,J,X,O,M
J,X,O,M
X,O,M,N
O,M,N
M,N

N

B,C,D,E
C,D,E,F,L

A,B,C

A,B,G,H
A,B,G,M

A,B,G
A,B,L
A,B,O
A,B,N
A,B,J
A,B,E,F
A,B,E,K
A,B,E

A,B
A
D
I

What is the runtime complexity? What is the runtime complexity?

What is the space complexity? What is the space complexity?



Complexity Analysis
How long will the algorithm take when run on inputs of different sizes:
• If it takes X seconds to process 1000 items, how long will it take to 

process twice as many (2000 items) or ten times as many (10,000 items)?

Generally looking for an order of magnitude estimate:

Also very important for space characterization:
Sometimes doubling the number of elements will more than double the 
amount of space needed

Constant time

Accessing 1st or 
1 billionth entry 
from an array 
takes same 

amount of time

Linear time

Takes 10 times longer 
to scan a list that has 

10 times as many 
values

Quadradic time

Nested loops grows 
with the square of the 

list length

What’s another complexity we have seen?



FindMax Analysis
public static int findMaximum(int [] myarray) {

int max = myarray[0];
for (int i = 1; i < myarray.length; i++) {
if (myarray[i] > max) {
max = myarray[i];

}
}

return max;
}

What is the total amount of work done?

T(n) = C(n) + A(n) = (2n) + (3n – 1) = 5n-1

Should we worry about the “-1”?

Should we worry about the 5n?

Nah, the runtime is linearly proportional to the length of the array

Nah, for sufficiently large inputs will make a tiny difference



Big-O Notation
• Formally, algorithms that run in O(X) time means that the total 

number of steps (comparisons and assignments) is a polynomial 
whose largest term is X, aka asymptotic behavior
• f(x) ∈ O(g(x)) if there exists c > 0 (e.g., c = 1) and x0 (e.g., x0 = 5) 

such that f(x) ≤ cg(x) whenever x ≥ x0
• T(n) = 33 => O(1)
• T(n) = 5n-2 => O(n)
• T(n) = 37n2 + 16n – 8 => O(n2)
• T(n) = 99n3 + 12n2 + 70000n + 2 => O(n3)
• T(n) = 127n log (n) + log(n) + 16 => O(n lg n)
• T(n) = 33 log (n) + 8 => O(lg n)
• T(n) = 900*2n + 12n2 + 33n + 54 => O(2n)

• Informally, you can read Big-O(X) as “On the order of X”
• O(1) => On the order of constant time
• O(n) => On the order of linear time
• O(n2) => On the order of quadratic time
• O(n3) => On the order of cubic time
• O(lg n) => On the order of logarithmic time
• O(n lg n) => On the order of n log n time



Growth of functions

A quadratic function isnt necessarily larger than a linear function for all 
possible inputs, but eventually will be

That largest polynomial term defines the Big-O complexity



Growth of functions

A quadratic function isnt necessarily larger than a linear function for all 
possible inputs, but eventually will be

That largest polynomial term defines the Big-O complexity



http://bigocheatsheet.com/

Growth of functions



Growth of functions

http://bigocheatsheet.com/
Finding an element in a balanced tree,

Simple arithmetic, simple comparison, array access

Linear Search

Finding the nearest photo
from every other photo with a k-d tree

Processing every element in a square array,
Comparing every element to every other element

Trying every
possible subset

Trying every
possible permutation



Quadratic Sorting Algorithms

Insertion Sort
Slide next value into 

correct position

Bubble Sort
Swap up bigger 

values over smaller

Selection Sort
Move next smallest 

into position

Asymptotically all three have the same performance, but can differ 
for different types of data. HW 3 will compare them in more detail





Next Steps

1. Review for Midterm

2. Check on Piazza for tips & corrections!


