
CS 600.226: Data Structures
Michael Schatz

Oct 8 2018
Lecture 17. Machine Code Optimization

Agenda
1. Questions on HW4

2. Recap on Graphs

3. Machine Code Optimization

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Assignment 4: Stacking Queues

Out on: September 28, 2018
Due by: October 5, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview
The fourth assignment is mostly about stacks and dequeues. For the
former you'll build a simple calculator application, for the latter you'll
implement the data structure in a way that satisfies certain performance
characteristics (in addition to the usual correctness properties).

Agenda
1. Questions on HW4

2. Recap on Graphs

3. Machine Code Optimization

Graphs are Everywhere!

Computers in a network, Friends on Facebook, Roads & Cities on
GoogleMaps, Webpages on Internet, Cells in your body, …

digraph G {
A->B
B->C
A->C

}
$ dot -Tpdf -o g.pdf g.dot

Representing Graphs

A

C D E

F

G

B

A B C D E F G

A 1 1 1

B 1 1

C 1 1

D 1

E 1

F 1

G

Adjacency Matrix
Good for dense graphs

Fast, Fixed storage: N2 bits or N2 weights

Incidence List
Good for sparse graphs

Compact storage: ~8 bytes/edge

A: C, D, E D: F
B: D, E E: F
C: F, G G:

Edge List
Easy, good if you (mostly) need

to iterate through the edges
~16 bytes / edge

A,C B,C C,F
A,D B,D C,G
A,E B,E D,F

E,F F,G

Tools
Graphviz: http://www.graphviz.org/
Gephi: https://gephi.org/
Cytoscape: http://www.cytoscape.org/

http://www.graphviz.org/
https://gephi.org/
http://www.cytoscape.org/

Representing Graphs

A

C D E

F

G

B

Incidence List
Good for sparse graphs

Compact storage

A: C, D, E D: F
B: D, E E: F
C: F, G G:

Graph

nodes

Node Node Node Node Node Node

A B C D
in:

out:

E F

Edge Edge Edge

A
D

B
D

D
F

Note the labels in the edges are really
references to the corresponding node objects!

Graph Searching
Maps
Nodes: Cities / Intersections: Name / GPS Location
Edges: Roads / Flight Path: Distance, Time, Cost

00

A

B

C

D

E

F

G

H

L

NJ

I

M

3

X0

0

0

A:1

B:1

C:1

D:2

E:2

G:2

H:2

F:2

L:2

N:4J:3

I:3

M:3

O:3

X

BFS
BFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.begin()
if (cur == stop)

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child)

[How many nodes will it visit?]

[What's the running time?]

[What happens for disconnected
components?]

A,B,C

D,E,F,L,G,H
E,F,L,G,H,I
F,L,G,H,I,J
L,G,H,I,J,X
G,H,I,J,X,O
H,I,J,X,O

I,J,X,O,M
J,X,O,M
X,O,M,N
O,M,N
M,N

N

B,C,D,E
C,D,E,F,L

X:3

00

A:1

B:1

C:1

D:2

E:2

F:2

G:2

H:2

L:2

N:4J:3

I:3

M:3

O:3

X:3

BFS
BFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.begin()
if (cur == stop)

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child)

0

A

B

C

D

E

F

G

J

H

L

I

M

N

O

K0 B:1

A:1

D:2 I:3

E:7

G:2 L:3C:1

H:2 M:3

N:5

O:4

J:6

F:7 K:8

0DFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.end()
if (cur == stop)

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child)

DFS
0

A,B,C

D,E,F,L,G,H
E,F,L,G,H,I
F,L,G,H,I,J
L,G,H,I,J,X
G,H,I,J,X,O
H,I,J,X,O

I,J,X,O,M
J,X,O,M
X,O,M,N
O,M,N
M,N

N

B,C,D,E
C,D,E,F,L

A,B,C

A,B,G,H
A,B,G,M

A,B,G
A,B,L
A,B,O
A,B,N
A,B,J
A,B,E,F
A,B,E,K
A,B,E

A,B

A
D
I

00

A:1

B:1

C:1

D:2

E:2

F:2

G:2

H:2

L:2

N:4J:3

I:3

M:3

O:3

X:3

BFS: Queue
BFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.begin()
if (cur == stop)

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child)

0

A

B

C

D

E

F

G

J

H

L

I

M

N

O

K0 B:1

A:1

D:2 I:3

E:7

G:2 L:3C:1

H:2 M:3

N:5

O:4

J:6

F:7 K:8

0DFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.end()
if (cur == stop)

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child)

DFS: Stack
0

A,B,C

D,E,F,L,G,H
E,F,L,G,H,I
F,L,G,H,I,J
L,G,H,I,J,X
G,H,I,J,X,O
H,I,J,X,O

I,J,X,O,M
J,X,O,M
X,O,M,N
O,M,N
M,N

N

B,C,D,E
C,D,E,F,L

A,B,C

A,B,G,H
A,B,G,M

A,B,G
A,B,L
A,B,O
A,B,N
A,B,J
A,B,E,F
A,B,E,K
A,B,E

A,B
A
D
I

What is the runtime complexity? What is the runtime complexity?

What is the space complexity? What is the space complexity?

Graph Interface 6

public interface Graph<V,E> {
...
Object label(Vertex<V> v);
Object label(Edge<E> e);
void label(Vertex<V> v, Object label);
void label(Edge<E> e, Object label);
void clearLabels();
...

}

A

C D

B

Note use of overloading: compiler will figure out which version you meant
based on parameters passed on. Good for simple, closely related methods

Very flexible, but client will have to cast Object to correct type

Breath First Searching

Breath First Searching

2d search space: 220

Bi-Directional
Breath First Searching

Unidirectional: 2d search horizon: 220 = O(2d)
Bidirectional: 2d/2+1+2d/2 search horizon: 211 + 210 = O(2d/2)

Either way you are doomed, but in practice helps a lot

Also uses many other techniques:
- Best-first-search (A* algorithm)
- Branch-and-bound search
- Multiple levels, Zones, & Precomputation

More to come…

Agenda
1. Questions on HW4

2. Recap on Graphs

3. Machine Code Optimization

Machine Code Optimization

Intel Instruction Set

Note: modern processors have hundreds of instructions

Intro to machine code

compiler

assembler

Java bytecode instructions

https://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

Java bytecode instructions

https://en.wikipedia.org/wiki/Java_bytecode

Reverse Engineering Bytecode
$ od -x Mystery.class
0000000 feca beba 0000 3400 3c00 000a 0013 061c
0000020 0040 0000 0000 0000 4006 003f 0000 0000
0000040 0a00 1d00 1e00 0009 001f 0720 2100 000a
0000060 0008 081c 2200 000a 0008 0a23 0800 2400
0000100 0008 0a25 0800 2600 0008 0a27 0800 2800
0000120 000a 0029 072a 2b00 0007 012c 0600 693c
0000140 696e 3e74 0001 2803 5629 0001 4304 646f
0000160 0165 0f00 694c 656e 754e 626d 7265 6154
0000200 6c62 0165 0400 616d 6e69 0001 2816 4c5b
0000220 616a 6176 6c2f 6e61 2f67 7453 6972 676e
0000240 293b 0156 0a00 6f53 7275 6563 6946 656c
0000260 0001 520e 7665 6569 4977 746e 6a2e 7661
0000300 0c61 1400 1500 0007 0c2d 2e00 2f00 0007
0000320 0c30 3100 3200 0001 6a17 7661 2f61 616c
0000340 676e 532f 7274 6e69 4267 6975 646c 7265
0000360 0001 6403 203a 000c 0033 0c34 3300 3500
0000400 0001 2004 3a69 0c20 3300 3600 0001 2006
0000420 2b69 3a31 0c20 3700 3800 0007 0c39 3a00
0000440 3b00 0001 5209 7665 6569 4977 746e 0001
0000460 6a10 7661 2f61 616c 676e 4f2f 6a62 6365
0000500 0174 0e00 616a 6176 6c2f 6e61 2f67 614d
0000520 6874 0001 7003 776f 0001 2805 4444 4429
0000540 0001 6a10 7661 2f61 616c 676e 532f 7379
0000560 6574 016d 0300 756f 0174 1500 6a4c 7661
0000600 2f61 6f69 502f 6972 746e 7453 6572 6d61
0000620 013b 0600 7061 6570 646e 0001 282d 6a4c
0000640 7661 2f61 616c 676e 532f 7274 6e69 3b67
0000660 4c29 616a 6176 6c2f 6e61 2f67 7453 6972
0000700 676e 7542 6c69 6564 3b72 0001 281c 2944
0000720 6a4c 7661 2f61 616c 676e 532f 7274 6e69
0000740 4267 6975 646c 7265 013b 1c00 4928 4c29
0000760 616a 6176 6c2f 6e61 2f67 7453 6972 676e

Reverse Engineering Bytecode
$ od -x Mystery.class
0000000 feca beba 0000 3400 3c00 000a 0013 061c
0000020 0040 0000 0000 0000 4006 003f 0000 0000
0000040 0a00 1d00 1e00 0009 001f 0720 2100 000a
0000060 0008 081c 2200 000a 0008 0a23 0800 2400
0000100 0008 0a25 0800 2600 0008 0a27 0800 2800
0000120 000a 0029 072a 2b00 0007 012c 0600 693c
0000140 696e 3e74 0001 2803 5629 0001 4304 646f
0000160 0165 0f00 694c 656e 754e 626d 7265 6154
0000200 6c62 0165 0400 616d 6e69 0001 2816 4c5b
0000220 616a 6176 6c2f 6e61 2f67 7453 6972 676e
0000240 293b 0156 0a00 6f53 7275 6563 6946 656c
0000260 0001 520e 7665 6569 4977 746e 6a2e 7661
0000300 0c61 1400 1500 0007 0c2d 2e00 2f00 0007
0000320 0c30 3100 3200 0001 6a17 7661 2f61 616c
0000340 676e 532f 7274 6e69 4267 6975 646c 7265
0000360 0001 6403 203a 000c 0033 0c34 3300 3500
0000400 0001 2004 3a69 0c20 3300 3600 0001 2006
0000420 2b69 3a31 0c20 3700 3800 0007 0c39 3a00
0000440 3b00 0001 5209 7665 6569 4977 746e 0001
0000460 6a10 7661 2f61 616c 676e 4f2f 6a62 6365
0000500 0174 0e00 616a 6176 6c2f 6e61 2f67 614d
0000520 6874 0001 7003 776f 0001 2805 4444 4429
0000540 0001 6a10 7661 2f61 616c 676e 532f 7379
0000560 6574 016d 0300 756f 0174 1500 6a4c 7661
0000600 2f61 6f69 502f 6972 746e 7453 6572 6d61
0000620 013b 0600 7061 6570 646e 0001 282d 6a4c
0000640 7661 2f61 616c 676e 532f 7274 6e69 3b67
0000660 4c29 616a 6176 6c2f 6e61 2f67 7453 6972
0000700 676e 7542 6c69 6564 3b72 0001 281c 2944
0000720 6a4c 7661 2f61 616c 676e 532f 7274 6e69
0000740 4267 6975 646c 7265 013b 1c00 4928 4c29
0000760 616a 6176 6c2f 6e61 2f67 7453 6972 676e

Just Kidding J

Midterm Review

Primitive Data Types
The 8 primitive data types supported by the Java programming language are:
1. byte: 8-bit signed two's complement integer: [-128, 127]
2. short: 16-bit signed two's complement integer: [-32,768, 32,767]
3. int: 32-bit signed two's complement integer: [-231, 231-1]
4. long: 64-bit two's complement integer: [-263, 263-1]
5. float: Single-precision 32-bit IEEE 754 floating point. Good for saving

memory in large arrays of values.
6. double: Double-precision 64-bit IEEE 754 floating point. Default choice for

decimal values
7. boolean: Two possible values: true and false. This data type represents one

bit of information, but its "size" isn't something that's precisely defined.
8. char: The char data type is a single 16-bit Unicode character.

Everything else is an Object

Note there is an Object version of each primitive data type and Java will try
to convert back and forth when you need it:

int ó Integer, float ó Float, etc

Classes & Objects
All java code must be in some class (and inside some package)
• If no package name is listed, code goes into unnamed package
• This helps organize code, and avoids naming conflicts: if your code defines a
method “print”, and my code defines a method “print” specifying the class (and
package) will clarify which one you mean

However, we don’t always want nor need an object to call a method:

Use the static keyword to tell the compiler that it is okay to call this method
directly (without an object):

class MathStuff {
public int max3(int a, int b, int c) { … }

}

MathStuff stuff = new MathStuff();
int biggest = stuff.max3(42,14,99);

class MathStuff {
public static int max3(int a, int b, int c) { … }

}

int biggest = MathStuff.max3(42,14,99);

Variables
Instance Variables (Non-Static Fields)
• Values are unique to each instance of a class (to each object)

Class Variables (Static Fields)
• Tells the compiler that there is exactly one copy of this variable in

existence, regardless of how many times the class has been instantiated.

Local Variables
• Similar to how an object stores its state in fields, a method can store its

temporary state in local variables. Local variables are only visible to the
methods in which they are declared

Parameters
• Similar to local variables, although are passed in from other calling

methods.

Final Variables
• Final means the value can only be set once

Variables
Instance Variables (Non-Static Fields)
• Values are unique to each instance of a class (to each object)

Class Variables (Static Fields)
• Tells the compiler that there is exactly one copy of this variable in

existence, regardless of how many times the class has been instantiated.

Local Variables
• Similar to how an object stores its state in fields, a method can store its

temporary state in local variables. Local variables are only visible to the
methods in which they are declared

Parameters
• Similar to local variables, although are passed in from other calling

methods.

Final Variables
• Final means the value can only be set onceHow should you store the currentSpeed in a Bicycle class?

How should you store Pi in a Math class?

Controlling Access
Use access level modifiers to restrict access to methods and member

variables (enforced by the compiler and JRE!)

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Access levels affect you in two ways:
• When you use classes that come from another source, such as the

classes in the Java platform, access levels determine which members of
those classes your own classes can use.

• When you write a class, you need to decide what access level every
member variable and every method in your class should have.

Controlling Access
Use access level modifiers to restrict access to methods and member

variables (enforced by the compiler and JRE!)

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Access levels affect you in two ways:
• When you use classes that come from another source, such as the

classes in the Java platform, access levels determine which members of
those classes your own classes can use.

• When you write a class, you need to decide what access level every
member variable and every method in your class should have.

Should you make all your methods and fields public?

No way! Try to make access as restricted as possible!

Introduction to Java Interfaces

Objects define their interaction with the outside world through the
methods that they expose. Methods form the object's interface with the
outside world; the buttons on the front of your television set, for example,
are the interface between you and the electrical wiring on the other side of
its plastic casing. You press the "power" button to turn the television on and
off. […] An interface is a group of related methods with empty bodies.

https://docs.oracle.com/javase/tutorial/java/concepts/interface.html

interface Counter {
int value();
void up();
void down();

}

+ -

specification:
Counter has an integer value
‘+’ button increments by 1
‘-’ button decrements by 1

Specification can be a separate documents or in
the javadoc comments

Nested Classes

class OuterClass {
...
class NestedClass {

...
}

}

The Java programming language allows you to define a class within another
class – a nested class.

• It is a way of logically grouping classes that are only used in one place:
If a class is useful to only one other class, then it is logical to embed it in that
class and keep the two together. Nesting such "helper classes" makes their
package more streamlined.

• It increases encapsulation: Consider two top-level classes, A and B, where
B needs access to members of A that would otherwise be declared private. By
hiding class B within class A, A's members can be declared private and B can
access them. In addition, B itself can be hidden from the outside world.

• It can lead to more readable and maintainable code: Nesting small
classes within top-level classes places the code closer to where it is used.

https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

Nested and Inner Classes
Nested classes are divided into two categories: static and non-static.
• Nested classes that are declared static are called static nested classes.
• Non-static nested classes are called inner classes.

class OuterClass {
...
static class StaticNestedClass {

...
}
class InnerClass {

...
}

}

A static nested class is associated with its outer class. And like static class
methods, a static nested class cannot refer directly to instance variables or
methods defined in its enclosing class: it can use them only through an
object reference.

An inner class is associated with an instance of its enclosing class and has
direct access to that object's methods and fields. Also, because an inner
class is associated with an instance, it cannot define any static members
itself.

Nested and Inner Classes
Nested classes are divided into two categories: static and non-static.
• Nested classes that are declared static are called static nested classes.
• Non-static nested classes are called inner classes.

class OuterClass {
...
static class StaticNestedClass {

...
}
class InnerClass {

...
}

}

A static nested class is associated with its outer class. And like static class
methods, a static nested class cannot refer directly to instance variables or
methods defined in its enclosing class: it can use them only through an
object reference.

An inner class is associated with an instance of its enclosing class and has
direct access to that object's methods and fields. Also, because an inner
class is associated with an instance, it cannot define any static members
itself.

A nested class is a member of its enclosing class.
• As a member of the OuterClass, a nested class can be declared private,

public, protected, or package private.

Static nested classes do not have access to other members of the
enclosing class.
• Like static methods, you would have to pass in an object reference

Non-static nested classes (inner classes) have access to other
members of the enclosing class, even if they are declared private.
• An instance of InnerClass can exist only within an instance of

OuterClass

Java Abstract Classes
An abstract class is a class that is declared abstract—it may or may not include
abstract methods. Abstract classes cannot be instantiated, but they can be
subclassed.

An abstract method is a method that is declared without an implementation
(without braces, and followed by a semicolon), like this:

If a class includes abstract methods, then the class itself must be declared
abstract, as in:

public abstract class GraphicObject {
// declare fields
// declare nonabstract and abstact methods
void setPen(Pen p) { this.pen = p }
abstract void draw();

}

abstract void moveTo(double deltaX, double deltaY);

https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

Abstract Classes

Abstract classes are analogous to interfaces, but with a partial
implementation. An abstract class is a class that is declared abstract—it
may or may not include abstract methods. Abstract classes cannot be
instantiated, but they can be subclassed. An abstract method is a method that
is declared without an implementation (without braces, and followed by a
semicolon), like this:

abstract void moveTo(double deltaX, double deltaY);

If a class includes abstract methods, then the class itself must be declared
abstract, as in:

public abstract class GraphicObject {
// declare fields
int x, y;
// declare nonabstract methods
abstract void draw();

}

https://docs.oracle.com/javase/tutorial/java/IandI/abstract.html

Consider using abstract classes if any of these statements apply to your
situation:
• You want to share code among several closely related classes.
• You expect that classes that extend your abstract class have many common

methods or fields, or require access modifiers other than public (such as
protected and private).

• You want to declare non-static or non-final fields. This enables you to define
methods that can access and modify the state of the object to which they
belong.

Consider using interfaces if any of these statements apply to your
situation:
• You expect that unrelated classes would implement your interface. For

example, the interfaces Comparable and Cloneable are implemented by many
unrelated classes.

• You want to specify the behavior of a particular data type, but not concerned
about who implements its behavior.

• You want to take advantage of multiple inheritance of type.

Java Generics
Generics enable types (classes and interfaces) to be parameters when defining classes, interfaces
and methods. Much like the more familiar formal parameters used in method declarations, type
parameters provide a way for you to re-use the same code with different inputs. The
difference is that the inputs to formal parameters are values, while the inputs to type parameters
are types.

Code that uses generics has many benefits over non-generic code:
• Stronger type checks at compile time. A Java compiler applies strong type checking to

generic code and issues errors if the code violates type safety. Fixing compile-time errors is
easier than fixing runtime errors, which can be difficult to find.

• Elimination of casts. The following code snippet without generics requires casting:
List list = new ArrayList();
list.add("hello");
String s = (String) list.get(0);

When re-written to use generics, the code does not require casting:
List<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(0); // no cast

• Enabling programmers to implement generic algorithms. By using generics, programmers
can implement generic algorithms that work on collections of different types, can be
customized, and are type safe and easier to read.

https://docs.oracle.com/javase/tutorial/java/generics/why.html

Java Generics
Generics enable types (classes and interfaces) to be parameters when defining classes, interfaces
and methods. Much like the more familiar formal parameters used in method declarations, type
parameters provide a way for you to re-use the same code with different inputs. The
difference is that the inputs to formal parameters are values, while the inputs to type parameters
are types.

Code that uses generics has many benefits over non-generic code:
• Stronger type checks at compile time. A Java compiler applies strong type checking to

generic code and issues errors if the code violates type safety. Fixing compile-time errors is
easier than fixing runtime errors, which can be difficult to find.

• Elimination of casts. The following code snippet without generics requires casting:
List list = new ArrayList();
list.add("hello");
String s = (String) list.get(0);

When re-written to use generics, the code does not require casting:
List<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(0); // no cast

• Enabling programmers to implement generic algorithms. By using generics, programmers
can implement generic algorithms that work on collections of different types, can be
customized, and are type safe and easier to read.

https://docs.oracle.com/javase/tutorial/java/generics/why.html

Midterm Topics

Topics

01.Intro (kd-tree)
02.Interfaces
03.ArraysGenericsExceptions
04.Lists
05.Iterators
06.Complexity
07.MoreComplexity
08.Sorting
09.Stacks
10.StacksJunit
11.Queues and Dequeues
12.Lists (Single/Double)
13.MoreLists
14.Trees & Tree Iteration
15.Graphs
16.GraphSearch

For each data structure discuss:

- Explain the interface
- Explain/Draw how it will be implemented
- Explain/Draw how to add/remove elements
- Iterate through the elements
- Explain the complexity of these

In addition:

- Can you discuss interfaces and ADTs
- Can you discuss computational complexity

Midterm Topics

Next Steps

1. Review for Midterm

2. Check on Piazza for tips & corrections!

