
CS 600.226: Data Structures
Michael Schatz

Oct 3 2018
Lecture 16. More Graphs

Agenda
1. Questions on HW4

2. Recap on Trees

3. Graphs

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Assignment 4: Stacking Queues

Out on: September 28, 2018
Due by: October 5, 2018 before 10:00 pm
Collaboration: None
Grading:

Packaging 10%,
Style 10% (where applicable),
Testing 10% (where applicable),
Performance 10% (where applicable),
Functionality 60% (where applicable)

Overview
The fourth assignment is mostly about stacks and dequeues. For the
former you'll build a simple calculator application, for the latter you'll
implement the data structure in a way that satisfies certain performance
characteristics (in addition to the usual correctness properties).

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Problem 1: Calculating Stacks (50%)

Your first task is to implement a basic RPN calculator that supports integer
operands like 1, 64738, and -42 as well as the (binary) integer operators +, -, *, /,
and %. Your program should be called Calc and work as follows:

• You create an empty Stack to hold intermediate results and then repeatedly
accept input from the user. It doesn't matter whether you use the ArrayStack
or the ListStack we provide, what does matter is that those specific types
appear only once in your program.

• If the user enters a valid integer, you push that integer onto the stack.
• If the user enters a valid operator, you pop two integers off the stack,

perform the requested operation, and push the result back onto the stack.
• If the user enters the symbol ? (that's a question mark), you print the current

state of the stack using its toString method followed by a new line.
• If the user enters the symbol . (that's a dot or full-stop), you pop the top

element off the stack and print it (only the top element, not the entire stack)
followed by a new line.

• If the user enters the symbol ! (that's an exclamation mark or bang), you exit
the program.

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

$ java Calc
?
[]
10
?
[10]
20 30
?
[30, 20, 10]
*
?
[600, 10]
+
?
[610]
.
610
!
$

$ java Calc
? 10 ? 20 30 ? *
? + ? . !
[]
[10]
[30, 20, 10]
[600, 10]
[610]
610
$

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Problem 2: Hacking Growable Dequeues (50%)
Your second task is to implement a generic ArrayDequeue class as outlined in
lecture. As is to be expected, ArrayDequeue must implement the Dequeue
interface we provided on github.

• Your implementation must be done in terms of an array that grows by doubling
as needed. It's up to you whether you want to use a basic Java array or the
SimpleArray class you know and love; just in case you prefer the latter, we've
once again included it on the github directory for this assignment. Your initial
array must have a length of one slot only! (Trust us, that's going to make
debugging the "doubling" part a lot easier.)

• Your implementation must support all Dequeue operations except insertion in
(worst-case) constant time; insertion can take longer every now and then
(when you need to grow the array), but overall all insertion operations must be
constant amortized time as discussed in lecture.

• You should provide a toString method in addition to the methods required by
the Dequeue interface. A new dequeue into which 1, 2, and 3 were inserted
using insertBack() should print as [1, 2, 3] while an empty dequeue should
print as []

Assignment 4: Due Friday Oct 5 @ 10pm
https://github.com/schatzlab/datastructures2018/blob/master/assignments/assignment04/README.md

Bonus Problem (5 pts)

Develop an algebraic specification for the abstract data type Queue. Use

new, empty, enqueue, dequeue, and front (with the meaning of each as

discussed in lecture) as your set of operations. Consider unbounded queues

only.

The difficulty is going to be modelling the FIFO (first-in-first-out) behavior

accurately. You'll probably need at least one axiom with a case distinction

using an if expression; the syntax for this in the Array specification for

example.

Doing this problem without resorting to Google may be rather helpful for the

upcoming midterm. There's no need to submit the problem, but you can

submit it if you wish; just include it at the end of your README file.

Agenda
1. Questions on HW4

2. Recap on Trees

3. Graphs

Trees

Level Order Traversals

A

B DC

E F

J

G IH

LK

How to level order print?

(A) (B C D) (E F G H I) (J K L)

LevelOrderTraversal(Node n):
Queue q
s.enqueue(n)
while (!q.empty()):

Node x = q.dequeue()
print(x)
for c in x.children:

s.enqueue(c)

[A]
[D,C,B]
[F,E,D,C]
[F,E,D]
[I,H,G,F,E]
[I,H,G,F]
[J,I,H,G]
[J,I,H]
…

Queue leads to a
Breadth-First Search

Would you ever add “jump edges”?

Yes! In a special tree called a “suffix tree”, ”suffix links” allow us to navigate
between nodes that have a special relationship that is hard to otherwise compute

More to come…

Inheritance

Why Inheritance?

Code Reuse
• Subclass gets to use all methods of
the parent class “for free” by extending
the parent class

Overriding
• Subclass can have more specific
implementation than the parent class

Design constraints
• Subclasses get all of the features of
the parent, whether you like them or
not!

Saying B inherits from A is a very
strong relationship:

anytime that A could be used, B
could be instead

Inheritance Types

B isa A

Square isa
Rectangle

Single Inheritance

C isa B, B isa A

Square isa Rectangle
Rectangle isa Shape

=>
Square isa Shape

Multilevel Inheritance

C isa A, C isa B

Mike isa CS Prof
Mike isa Bio Prof

(not in Java!)

Multiple Inheritance

Inheritance versus Encapsulation

B isa A

Square isa
Rectangle

Photo

Position pos
String name
String URL

StringList favorites

Position

Double lat
Double long
Double altitude

StringList

int capacity
String [] data

Photo hasa Position,
Photo hasa favorites,

etc

Encapsulation is used to hide the values or state
of a structured data object inside a class,

When to use static?

Graphs

Graphs are Everywhere!

Computers in a network, Friends on Facebook, Roads & Cities on
GoogleMaps, Webpages on Internet, Cells in your body, …

Graphs

A B

• Nodes aka vertices
– People, Proteins, Cities, Genes, Neurons, Sequences, Numbers, …

• Edges aka arcs
– A is connected to B
– A is related to B
– A regulates B
– A precedes B
– A interacts with B
– A activates B
– …

Graph Types

A

B

C

List Tree

A

B C D

F HGE

I J

Directed
Acyclic
Graph

A

C D E

F

G

B

A

B C

D E

Cycle

A

B C

D E

Complete

Definitions (1)

A B

Directed Edge

C D

Undirected Edge
E

Self Edge
(Unusual but usually allowed)

• A and B are adjacent

• An edge connected to a vertex is incident on that vertex

• The number of edges incident on a vertex is the degree of that vertex
• For directed graphs, separately report indegree and outdegree

• A multigraph allows multiple edges between the same pair of nodes, a
simple graph does not allow multiple edges (most common)

Definitions (2)
A B

• A path is a sequence of edges e1, e2, … en in which each edge starts from
the vertex the previous edge ended at

• A path that starts and ends at the same node is a cycle

• The number of edges in a path is called the length of the path

• A graph is connected if there is a path between every pair of nodes,
otherwise it is disconnected into >1 connected components

C F G

D E

H I

J

Network Characteristics

C. elegans D. melanogaster S. cerevisiae

Nodes 2646 7464 4965

Edges 4037 22831 17536

Avg. / Max Degree 3.0 / 187 6.1 / 178 7.0 / 283

Components 109 66 32

Largest Component 2386 7335 4906

Diameter 14 12 11

Avg. Shortest Path 4.8 4.4 4.1

Degree
Distributions

Diameter: Maximum length of shortest path between two nodes
Scale Free: Power law distribution of degree => Avg. Shortest Path between nodes is small

(Most people have ~100 twitter followers, but some have >1M)

Network Characteristics

Diameter: Maximum length of shortest path between two nodes
Scale Free: Power law distribution of degree => Avg. Shortest Path between nodes is small

(Most people have ~100 twitter followers, but some have >1M)

Network Motifs

Network Motifs: Simple Building Blocks of Complex Networks
Milo et al (2002) Science. 298:824-827

• Network Motif
– Simple graph of connections
– Exhaustively enumerate all

possible 1, 2, 3, … k node
motifs

• Statistical Significance
– Compare frequency of a

particular network motif in
a real network as compared
to a randomized network

• Certain motifs are
“characteristic features” of
the network

Graph Interface
public interface Graph<V,E> {

...
Position<V> insertVertex(V v);

Position<E> insertEdge(Position<V> from, Position<V> to, E e)
throws InvalidPositionException, InsertionException;

V removeVertex(Position<V> p)
throws InvalidPositionException, RemovalException;

E removeEdge(Position<E> p)
throws InvalidPositionException;

Iterable<Position<V>> vertices();

Iterable<Position<E>> edges();

Iterable<Position<E>> incomingEdges(Position<V> p)
throws InvalidPositionException;

Iterable<Position<E>> outgoingEdges(Position<V> p)
throws InvalidPositionException;

...
}

Separate generic
types for vertices <V>

and edges <E>

Can iterate through all the nodes OR iterate through all the edges
as different algorithms may require one or the other

Representing Graphs

A

C D E

F

G

B

Incidence List
Good for sparse graphs

Compact storage

A: C, D, E D: F
B: D, E E: F
C: F, G G:

Graph

nodes

Node Node Node Node Node Node

A B C D
in:

out:

E F

Edge Edge Edge

A
D

B
D

D
F

Note the labels in the edges are really
references to the corresponding node objects!

Representing Graphs

A

C D E

F

G

B

Incidence List
Good for sparse graphs

Compact storage

A: C, D, E D: F
B: D, E E: F
C: F, G G:

Complexity Analysis
If n is the number of vertices, and m is the number of
edges, we need O(n + m) space to represent the graph

When we insert a vertex, allocate one object and two
empty edge lists: O(1)

When we insert an edge we allocate one object and
insert the edge into appropriate lists for the incident
vertices: O(1)

Remove a node? O(1); Only after edges removed

Remove
an edge?

O(d) where d is max degree;
O(n) worse case

Find/check edge
between nodes?

O(d);
O(n) worst case

digraph G {
A->B
B->C
A->C

}
$ dot -Tpdf -o g.pdf g.dot

Representing Graphs

A

C D E

F

G

B

A B C D E F G

A 1 1 1

B 1 1

C 1 1

D 1

E 1

F 1

G

Adjacency Matrix
Good for dense graphs

Fast, Fixed storage: N2 bits or N2 weights

Incidence List
Good for sparse graphs

Compact storage: ~8 bytes/edge

A: C, D, E D: F
B: D, E E: F
C: F, G G:

Edge List
Easy, good if you (mostly) need

to iterate through the edges
~16 bytes / edge

A,C B,C C,F
A,D B,D C,G
A,E B,E D,F

E,F F,G

Tools
Graphviz: http://www.graphviz.org/
Gephi: https://gephi.org/
Cytoscape: http://www.cytoscape.org/

http://www.graphviz.org/
https://gephi.org/
http://www.cytoscape.org/

Graph Interface
public interface Graph<V,E> {

...
Position<V> insertVertex(V v);

Position<E> insertEdge(Position<V> from, Position<V> to, E e)
throws InvalidPositionException, InsertionException;

V removeVertex(Position<V> p)
throws InvalidPositionException, RemovalException;

E removeEdge(Position<E> p)
throws InvalidPositionException;

Iterable<Position<V>> vertices();

Iterable<Position<E>> edges();

Iterable<Position<E>> incomingEdges(Position<V> p)
throws InvalidPositionException;

Iterable<Position<E>> outgoingEdges(Position<V> p)
throws InvalidPositionException;

...
}

Separate generic
types for vertices <V>

and edges <E>

Graph Interface
public interface Graph<V,E> {

...
Position<V> insertVertex(V v);

Position<E> insertEdge(Position<V> from, Position<V> to, E e)
throws InvalidPositionException, InsertionException;

V removeVertex(Position<V> p)
throws InvalidPositionException, RemovalException;

E removeEdge(Position<E> p)
throws InvalidPositionException;

Iterable<Position<V>> vertices();

Iterable<Position<E>> edges();

Iterable<Position<E>> incomingEdges(Position<V> p)
throws InvalidPositionException;

Iterable<Position<E>> outgoingEdges(Position<V> p)
throws InvalidPositionException;

...
}

Separate generic
types for vertices <V>

and edges <E>

Iterable

Iterable

Graph Interface
public interface Graph<V,E> {

...
Position<V> insertVertex(V v);

Position<E> insertEdge(Position<V> from, Position<V> to, E e)
throws InvalidPositionException, InsertionException;

...

Separate generic
types for vertices <V>

and edges <E>

What will insertEdge into Graph<String, Integer> return?

What will insertVertex into Graph<Integer, Integer> return?

Position<Integer>

Position<Integer>

:-(

Graph Interface 2
public interface Edge<T> extends Position<T> {}
public interface Vertex<T> extends Position<T> {}

public interface Graph<V,E> {
...
Vertex<V> insertVertex(V v);

Edge<E> insertEdge(Vertex<V> from, Vertex<V> to, E e)
throws InvalidVertexException, InsertionException;

V removeVertex(Vertex<V> p)
throws InvalidVertexException, RemovalException;

E removeEdge(Edge<E> p)
throws InvalidEdgeException;

Iterable<Vertex<V>> vertices();

Iterable<Edge<E>> edges();

...
} Now clients can check at compile time if their types are correct

What else is missing from the interface?

Graph Interface 3

public interface Graph<V,E> {
...
Vertex<V> fromVertex(Edge<E> e) ...
Vertex<V> toVertex(Edge<E> e) ...
...

}

Now clients can check their code to see where the edges go!

Don’t just define an interface, try to use it!

Graph Searching
Maps
Nodes: Cities / Intersections: Name / GPS Location
Edges: Roads / Flight Path: Distance, Time, Cost

https://www.youtube.com/watch?v=Rmn-amJ9UA4

https://www.youtube.com/watch?v=Rmn-amJ9UA4

Kevin Bacon and Bipartite Graphs
72

60

35

31

45

Find the shortest
path from

Kevin Bacon
to

Jason Lee

Breadth First Search:
4 hops

Bacon Distance:
2

00

A

B

C

D

E

F

G

H

L

NJ

I

M

3

X0

0

0

A:1

B:1

C:1

D:2

E:2

G:2

H:2

F:2

L:2

N:4J:3

I:3

M:3

O:3

X

BFS
BFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.begin()
if (cur == stop)

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child)

[How many nodes will it visit?]

[What's the running time?]

[What happens for disconnected
components?]

A,B,C

D,E,F,L,G,H
E,F,L,G,H,I
F,L,G,H,I,J
L,G,H,I,J,X
G,H,I,J,X,O
H,I,J,X,O

I,J,X,O,M
J,X,O,M
X,O,M,N
O,M,N
M,N

N

B,C,D,E
C,D,E,F,L

X:3

00

A:1

B:1

C:1

D:2

E:2

F:2

G:2

H:2

L:2

N:4J:3

I:3

M:3

O:3

X:3

BFS
BFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.begin()
if (cur == stop)

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child)

0

A

B

C

D

E

F

G

J

H

L

I

M

N

O

K0 B:1

A:1

D:2 I:3

E:7

G:2 L:3C:1

H:2 M:3

N:5

O:4

J:6

F:7 K:8

0DFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.end()
if (cur == stop)

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child)

DFS
0

A,B,C

D,E,F,L,G,H
E,F,L,G,H,I
F,L,G,H,I,J
L,G,H,I,J,X
G,H,I,J,X,O
H,I,J,X,O

I,J,X,O,M
J,X,O,M
X,O,M,N
O,M,N
M,N

N

B,C,D,E
C,D,E,F,L

A,B,C

A,B,G,H
A,B,G,M

A,B,G
A,B,L
A,B,O
A,B,N
A,B,J
A,B,E,F
A,B,E,K
A,B,E

A,B

A
D
I

Graph Interface 4

public interface Graph<V,E> {
...
boolean marked(Vertex<V> v);
boolean marked(Edge<E> e);
void mark(Vertex<V> v);
void mark(Edge<E> e);
void clearMarks();
...

}

A

C D

B

Graph Interface 5

public interface Graph<V,E,L> {
...
L label(Vertex<V> v);
L label(Edge<E> e);
void label(Vertex<V> v, L l);
void label(Edge<E> e, L l);
void clearLabels();
...

}

A

C D

B

More flexible, but client will have to use a consistent type for all labels

Graph Interface 6

public interface Graph<V,E> {
...
Object label(Vertex<V> v);
Object label(Edge<E> e);
void label(Vertex<V> v, Object label);
void label(Edge<E> e, Object label);
void clearLabels();
...

}

A

C D

B

Note use of overloading: compiler will figure out which version you meant
based on parameters passed on. Good for simple, closely related methods

Very flexible, but client will have to cast Object to correct type

00

A:1

B:1

C:1

D:2

E:2

F:2

G:2

H:2

L:2

N:4J:3

I:3

M:3

O:3

X:3

BFS: Queue
BFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.begin()
if (cur == stop)

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child)

0

A

B

C

D

E

F

G

J

H

L

I

M

N

O

K0 B:1

A:1

D:2 I:3

E:7

G:2 L:3C:1

H:2 M:3

N:5

O:4

J:6

F:7 K:8

0DFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())

cur = list.end()
if (cur == stop)

print cur.dist;
else

foreach child in cur.children
if (child.dist == -1)

child.dist = cur.dist+1
list.addEnd(child)

DFS: Stack
0

A,B,C

D,E,F,L,G,H
E,F,L,G,H,I
F,L,G,H,I,J
L,G,H,I,J,X
G,H,I,J,X,O
H,I,J,X,O

I,J,X,O,M
J,X,O,M
X,O,M,N
O,M,N
M,N

N

B,C,D,E
C,D,E,F,L

A,B,C

A,B,G,H
A,B,G,M

A,B,G
A,B,L
A,B,O
A,B,N
A,B,J
A,B,E,F
A,B,E,K
A,B,E

A,B
A
D
I

What is the runtime complexity? What is the runtime complexity?

What is the space complexity? What is the space complexity?

Breath First Searching

Breath First Searching

2d search space: 220

Bi-Directional
Breath First Searching

Unidirectional: 2d search horizon: 220 = O(2d)
Bidirectional: 2d/2+1+2d/2 search horizon: 211 + 210 = O(2d/2)

Either way you are doomed, but in practice helps a lot

Also uses many other techniques:
- Best-first-search (A* algorithm)
- Branch-and-bound search
- Multiple levels, Zones, & Precomputation

More to come…

Next Steps

1. Work on HW4

2. Check on Piazza for tips & corrections!

